
The sum of first $20$ terms of the sequence $0.7,0.77,0.777,....$ is:
A)$\dfrac{7}{81}\left( 179-{{10}^{-20}} \right)$
B)$\dfrac{7}{9}\left( 99-{{10}^{-20}} \right)$
C)$\dfrac{7}{81}\left( 179+{{10}^{-20}} \right)$
D)$\dfrac{7}{9}\left( 99+{{10}^{-20}} \right)$
Answer
518.7k+ views
Hint: he question can be solved using the concept of Geometric Progression (G.P) where the sum of Geometric Progression (G.P) is given by $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1$ where $a$ is the first term and $r$ is the common ratio, this formula is applicable only if the common ratio of the series is less than one. In a Geometric Progression (G.P) the terms are arranged such that they have a common ratio and which is given by $a+ar+a{{r}^{2}}+a{{r}^{3}}+.....a{{r}^{n}}$.
Complete step by step solution:
The sum of the terms of sequence is represented by:
$S=0.7+0.77+0.777+.........\left( 20terms \right)$……(1)
Eliminating the common term $7$ and rewriting the equation (1) we get:
$\Rightarrow S=7\left( 0.1+0.11+0.111+.........\left( 20terms \right) \right)$ ……(2)
Multiplying and dividing by $9$ in equation (2) we get:
$\Rightarrow S=\dfrac{7}{9}\left( 0.9+0.99+0.999+.........\left( 20terms \right) \right)$ ……(3)
Writing $0.9=\left( 1-0.1 \right)$ so that we can get a simplified version in equation (3) we get:
\[\Rightarrow S=\dfrac{7}{9}\left( \left( 1-0.1 \right)+\left( 1-0.01 \right)+\left( 1-0.001 \right)+.........20terms \right)\] ……(4)
Since there are $20$ terms of $1$ therefore equation (4) can be rewritten and we get:
$\Rightarrow S=\dfrac{7}{9}\left[ 20-\left( \dfrac{1}{10}+\dfrac{1}{{{10}^{2}}}+\dfrac{1}{{{10}^{3}}}+........\dfrac{1}{{{10}^{20}}} \right) \right]$ ……(5)
The terms $\dfrac{1}{10}+\dfrac{1}{{{10}^{2}}}+\dfrac{1}{{{10}^{3}}}+........\dfrac{1}{{{10}^{20}}}$ forms a Geometric Progression (G.P) with first term $\dfrac{1}{10}$ and common ratio $\dfrac{1}{10}$ .
Sum of Geometric Progression (G.P) is given by $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1$
Here the values of a and r are as listed below:
$\begin{align}
& a=\dfrac{1}{10},r=\dfrac{1}{10} \\
& S=\dfrac{7}{9}\left[ 20-\dfrac{1}{10}\left( \dfrac{1-{{\left( \dfrac{1}{10} \right)}^{n}}}{1-\dfrac{1}{10}} \right) \right] \\
\end{align}$ ……(6)
$\begin{align}
& \Rightarrow S=\dfrac{7}{9}\left[ 20-\dfrac{1}{10}\left( \dfrac{1-{{10}^{-20}}}{\dfrac{9}{10}} \right) \right] \\
& \Rightarrow S=\dfrac{7}{9}\left[ 20-\dfrac{1}{9}\left( 1-{{10}^{-20}} \right) \right] \\
& \Rightarrow S=\dfrac{7}{9}\left[ \dfrac{180-\left( 1-{{10}^{-20}} \right)}{9} \right] \\
\end{align}$
On simplifying the above equation we get:
$\therefore S=\dfrac{7}{81}\left[ 179+{{10}^{-20}} \right]$
So, the correct answer is “Option C”.
Note: Since here the number of terms is specified therefore the sum of infinite series of Geometric Progression (G.P) should not be used i.e. $\dfrac{a}{1-r}$ and the common ratio is less than $1$ therefore the correct formula of Geometric Progression (G.P) should be used i.e. $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1$.
The formula $\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r<1$ should not be used.
Complete step by step solution:
The sum of the terms of sequence is represented by:
$S=0.7+0.77+0.777+.........\left( 20terms \right)$……(1)
Eliminating the common term $7$ and rewriting the equation (1) we get:
$\Rightarrow S=7\left( 0.1+0.11+0.111+.........\left( 20terms \right) \right)$ ……(2)
Multiplying and dividing by $9$ in equation (2) we get:
$\Rightarrow S=\dfrac{7}{9}\left( 0.9+0.99+0.999+.........\left( 20terms \right) \right)$ ……(3)
Writing $0.9=\left( 1-0.1 \right)$ so that we can get a simplified version in equation (3) we get:
\[\Rightarrow S=\dfrac{7}{9}\left( \left( 1-0.1 \right)+\left( 1-0.01 \right)+\left( 1-0.001 \right)+.........20terms \right)\] ……(4)
Since there are $20$ terms of $1$ therefore equation (4) can be rewritten and we get:
$\Rightarrow S=\dfrac{7}{9}\left[ 20-\left( \dfrac{1}{10}+\dfrac{1}{{{10}^{2}}}+\dfrac{1}{{{10}^{3}}}+........\dfrac{1}{{{10}^{20}}} \right) \right]$ ……(5)
The terms $\dfrac{1}{10}+\dfrac{1}{{{10}^{2}}}+\dfrac{1}{{{10}^{3}}}+........\dfrac{1}{{{10}^{20}}}$ forms a Geometric Progression (G.P) with first term $\dfrac{1}{10}$ and common ratio $\dfrac{1}{10}$ .
Sum of Geometric Progression (G.P) is given by $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1$
Here the values of a and r are as listed below:
$\begin{align}
& a=\dfrac{1}{10},r=\dfrac{1}{10} \\
& S=\dfrac{7}{9}\left[ 20-\dfrac{1}{10}\left( \dfrac{1-{{\left( \dfrac{1}{10} \right)}^{n}}}{1-\dfrac{1}{10}} \right) \right] \\
\end{align}$ ……(6)
$\begin{align}
& \Rightarrow S=\dfrac{7}{9}\left[ 20-\dfrac{1}{10}\left( \dfrac{1-{{10}^{-20}}}{\dfrac{9}{10}} \right) \right] \\
& \Rightarrow S=\dfrac{7}{9}\left[ 20-\dfrac{1}{9}\left( 1-{{10}^{-20}} \right) \right] \\
& \Rightarrow S=\dfrac{7}{9}\left[ \dfrac{180-\left( 1-{{10}^{-20}} \right)}{9} \right] \\
\end{align}$
On simplifying the above equation we get:
$\therefore S=\dfrac{7}{81}\left[ 179+{{10}^{-20}} \right]$
So, the correct answer is “Option C”.
Note: Since here the number of terms is specified therefore the sum of infinite series of Geometric Progression (G.P) should not be used i.e. $\dfrac{a}{1-r}$ and the common ratio is less than $1$ therefore the correct formula of Geometric Progression (G.P) should be used i.e. $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},r<1$.
The formula $\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r<1$ should not be used.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

