
The sum of distinct real values of $\mu $, for which the vectors, $\mu \hat{i}+\hat{j}+\hat{k}$, $\hat{i}+\mu \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\mu \hat{k}$ are coplanar is
$\begin{align}
& \left( A \right)2 \\
& \left( B \right)0 \\
& \left( C \right)-1 \\
& \left( D \right)3 \\
\end{align}$
Answer
509.1k+ views
Hint: We solve this question by going through the concept of scalar triple product and then find the scalar triple product of the given vectors. Then we equate the obtained scalar triple product and equate it to zero to find the value of $\mu $, for which the given vectors are coplanar. Then we add them to find the required value.
Complete step-by-step solution:
First, let us go through the concept of the scalar triple product.
For any three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ scalar triple product is defined as
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let us go through the concept of coplanar. Any three vectors are said to be coplanar if they lie on the same plane. The three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ are said to be coplanar if their scalar triple product is equal to zero, that is $\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$, because if $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar then the cross product of any two of them, say $\overrightarrow{b}\times \overrightarrow{c}$ is perpendicular to the plane formed by them. Then the dot product of any vector on the plane and the normal is zero as they are perpendicular. So, we get that \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0\], that is scalar product of $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ is zero.
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$
The vectors we were given are $\mu \hat{i}+\hat{j}+\hat{k}$, $\hat{i}+\mu \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\mu \hat{k}$.
Now, let us find the scalar triple product of given vectors.
$\begin{align}
& \left| \begin{matrix}
\mu & 1 & 1 \\
1 & \mu & 1 \\
1 & 1 & \mu \\
\end{matrix} \right|=\mu \left| \begin{matrix}
\mu & 1 \\
1 & \mu \\
\end{matrix} \right|-\left| \begin{matrix}
1 & 1 \\
1 & \mu \\
\end{matrix} \right|+\left| \begin{matrix}
1 & \mu \\
1 & 1 \\
\end{matrix} \right| \\
& \Rightarrow \mu \left( {{\mu }^{2}}-1 \right)-\left( \mu -1 \right)+\left( 1-\mu \right) \\
& \Rightarrow {{\mu }^{3}}-\mu -\mu +1+1-\mu \\
& \Rightarrow {{\mu }^{3}}-3\mu +2 \\
\end{align}$
Now, let us equate the obtained scalar triple product to zero as they are coplanar.
$\begin{align}
& \Rightarrow {{\mu }^{3}}-3\mu +2=0 \\
& \Rightarrow \left( \mu -1 \right)\left( {{\mu }^{2}}+\mu -2 \right)=0 \\
& \Rightarrow \left( \mu -1 \right)\left( \mu -1 \right)\left( \mu +2 \right)=0 \\
& \Rightarrow {{\left( \mu -1 \right)}^{2}}\left( \mu +2 \right)=0 \\
& \Rightarrow \mu =1,-2 \\
\end{align}$
So, the distinct values of $\mu $ are 1 and -2.
We need to find the sum of those values. S, by adding them we get
$\begin{align}
& \Rightarrow 1+\left( -2 \right) \\
& \Rightarrow -1 \\
\end{align}$
So, sum of distinct values of $\mu $ is -1
Hence answer is option C.
Note: Here while solving this problem one might confuse and add 1 two times at the end while finding the sum of the roots, then we will get the answer as $1+1-2=0$, which is Option B, but we are asked to find the sum of distinct values of $\mu $. So, one must read the question carefully and solve the problem.
Complete step-by-step solution:
First, let us go through the concept of the scalar triple product.
For any three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ scalar triple product is defined as
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let us go through the concept of coplanar. Any three vectors are said to be coplanar if they lie on the same plane. The three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ are said to be coplanar if their scalar triple product is equal to zero, that is $\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$, because if $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar then the cross product of any two of them, say $\overrightarrow{b}\times \overrightarrow{c}$ is perpendicular to the plane formed by them. Then the dot product of any vector on the plane and the normal is zero as they are perpendicular. So, we get that \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0\], that is scalar product of $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ is zero.
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$
The vectors we were given are $\mu \hat{i}+\hat{j}+\hat{k}$, $\hat{i}+\mu \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\mu \hat{k}$.
Now, let us find the scalar triple product of given vectors.
$\begin{align}
& \left| \begin{matrix}
\mu & 1 & 1 \\
1 & \mu & 1 \\
1 & 1 & \mu \\
\end{matrix} \right|=\mu \left| \begin{matrix}
\mu & 1 \\
1 & \mu \\
\end{matrix} \right|-\left| \begin{matrix}
1 & 1 \\
1 & \mu \\
\end{matrix} \right|+\left| \begin{matrix}
1 & \mu \\
1 & 1 \\
\end{matrix} \right| \\
& \Rightarrow \mu \left( {{\mu }^{2}}-1 \right)-\left( \mu -1 \right)+\left( 1-\mu \right) \\
& \Rightarrow {{\mu }^{3}}-\mu -\mu +1+1-\mu \\
& \Rightarrow {{\mu }^{3}}-3\mu +2 \\
\end{align}$
Now, let us equate the obtained scalar triple product to zero as they are coplanar.
$\begin{align}
& \Rightarrow {{\mu }^{3}}-3\mu +2=0 \\
& \Rightarrow \left( \mu -1 \right)\left( {{\mu }^{2}}+\mu -2 \right)=0 \\
& \Rightarrow \left( \mu -1 \right)\left( \mu -1 \right)\left( \mu +2 \right)=0 \\
& \Rightarrow {{\left( \mu -1 \right)}^{2}}\left( \mu +2 \right)=0 \\
& \Rightarrow \mu =1,-2 \\
\end{align}$
So, the distinct values of $\mu $ are 1 and -2.
We need to find the sum of those values. S, by adding them we get
$\begin{align}
& \Rightarrow 1+\left( -2 \right) \\
& \Rightarrow -1 \\
\end{align}$
So, sum of distinct values of $\mu $ is -1
Hence answer is option C.
Note: Here while solving this problem one might confuse and add 1 two times at the end while finding the sum of the roots, then we will get the answer as $1+1-2=0$, which is Option B, but we are asked to find the sum of distinct values of $\mu $. So, one must read the question carefully and solve the problem.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
