
The sum of distinct real values of $\mu $, for which the vectors, $\mu \hat{i}+\hat{j}+\hat{k}$, $\hat{i}+\mu \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\mu \hat{k}$ are coplanar is
$\begin{align}
& \left( A \right)2 \\
& \left( B \right)0 \\
& \left( C \right)-1 \\
& \left( D \right)3 \\
\end{align}$
Answer
574.8k+ views
Hint: We solve this question by going through the concept of scalar triple product and then find the scalar triple product of the given vectors. Then we equate the obtained scalar triple product and equate it to zero to find the value of $\mu $, for which the given vectors are coplanar. Then we add them to find the required value.
Complete step-by-step solution:
First, let us go through the concept of the scalar triple product.
For any three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ scalar triple product is defined as
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let us go through the concept of coplanar. Any three vectors are said to be coplanar if they lie on the same plane. The three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ are said to be coplanar if their scalar triple product is equal to zero, that is $\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$, because if $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar then the cross product of any two of them, say $\overrightarrow{b}\times \overrightarrow{c}$ is perpendicular to the plane formed by them. Then the dot product of any vector on the plane and the normal is zero as they are perpendicular. So, we get that \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0\], that is scalar product of $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ is zero.
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$
The vectors we were given are $\mu \hat{i}+\hat{j}+\hat{k}$, $\hat{i}+\mu \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\mu \hat{k}$.
Now, let us find the scalar triple product of given vectors.
$\begin{align}
& \left| \begin{matrix}
\mu & 1 & 1 \\
1 & \mu & 1 \\
1 & 1 & \mu \\
\end{matrix} \right|=\mu \left| \begin{matrix}
\mu & 1 \\
1 & \mu \\
\end{matrix} \right|-\left| \begin{matrix}
1 & 1 \\
1 & \mu \\
\end{matrix} \right|+\left| \begin{matrix}
1 & \mu \\
1 & 1 \\
\end{matrix} \right| \\
& \Rightarrow \mu \left( {{\mu }^{2}}-1 \right)-\left( \mu -1 \right)+\left( 1-\mu \right) \\
& \Rightarrow {{\mu }^{3}}-\mu -\mu +1+1-\mu \\
& \Rightarrow {{\mu }^{3}}-3\mu +2 \\
\end{align}$
Now, let us equate the obtained scalar triple product to zero as they are coplanar.
$\begin{align}
& \Rightarrow {{\mu }^{3}}-3\mu +2=0 \\
& \Rightarrow \left( \mu -1 \right)\left( {{\mu }^{2}}+\mu -2 \right)=0 \\
& \Rightarrow \left( \mu -1 \right)\left( \mu -1 \right)\left( \mu +2 \right)=0 \\
& \Rightarrow {{\left( \mu -1 \right)}^{2}}\left( \mu +2 \right)=0 \\
& \Rightarrow \mu =1,-2 \\
\end{align}$
So, the distinct values of $\mu $ are 1 and -2.
We need to find the sum of those values. S, by adding them we get
$\begin{align}
& \Rightarrow 1+\left( -2 \right) \\
& \Rightarrow -1 \\
\end{align}$
So, sum of distinct values of $\mu $ is -1
Hence answer is option C.
Note: Here while solving this problem one might confuse and add 1 two times at the end while finding the sum of the roots, then we will get the answer as $1+1-2=0$, which is Option B, but we are asked to find the sum of distinct values of $\mu $. So, one must read the question carefully and solve the problem.
Complete step-by-step solution:
First, let us go through the concept of the scalar triple product.
For any three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ scalar triple product is defined as
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let us go through the concept of coplanar. Any three vectors are said to be coplanar if they lie on the same plane. The three vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$, $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ and $\overrightarrow{c}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ are said to be coplanar if their scalar triple product is equal to zero, that is $\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$, because if $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are coplanar then the cross product of any two of them, say $\overrightarrow{b}\times \overrightarrow{c}$ is perpendicular to the plane formed by them. Then the dot product of any vector on the plane and the normal is zero as they are perpendicular. So, we get that \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0\], that is scalar product of $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ is zero.
$\left[ \begin{matrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\
\end{matrix} \right]=0$
The vectors we were given are $\mu \hat{i}+\hat{j}+\hat{k}$, $\hat{i}+\mu \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\mu \hat{k}$.
Now, let us find the scalar triple product of given vectors.
$\begin{align}
& \left| \begin{matrix}
\mu & 1 & 1 \\
1 & \mu & 1 \\
1 & 1 & \mu \\
\end{matrix} \right|=\mu \left| \begin{matrix}
\mu & 1 \\
1 & \mu \\
\end{matrix} \right|-\left| \begin{matrix}
1 & 1 \\
1 & \mu \\
\end{matrix} \right|+\left| \begin{matrix}
1 & \mu \\
1 & 1 \\
\end{matrix} \right| \\
& \Rightarrow \mu \left( {{\mu }^{2}}-1 \right)-\left( \mu -1 \right)+\left( 1-\mu \right) \\
& \Rightarrow {{\mu }^{3}}-\mu -\mu +1+1-\mu \\
& \Rightarrow {{\mu }^{3}}-3\mu +2 \\
\end{align}$
Now, let us equate the obtained scalar triple product to zero as they are coplanar.
$\begin{align}
& \Rightarrow {{\mu }^{3}}-3\mu +2=0 \\
& \Rightarrow \left( \mu -1 \right)\left( {{\mu }^{2}}+\mu -2 \right)=0 \\
& \Rightarrow \left( \mu -1 \right)\left( \mu -1 \right)\left( \mu +2 \right)=0 \\
& \Rightarrow {{\left( \mu -1 \right)}^{2}}\left( \mu +2 \right)=0 \\
& \Rightarrow \mu =1,-2 \\
\end{align}$
So, the distinct values of $\mu $ are 1 and -2.
We need to find the sum of those values. S, by adding them we get
$\begin{align}
& \Rightarrow 1+\left( -2 \right) \\
& \Rightarrow -1 \\
\end{align}$
So, sum of distinct values of $\mu $ is -1
Hence answer is option C.
Note: Here while solving this problem one might confuse and add 1 two times at the end while finding the sum of the roots, then we will get the answer as $1+1-2=0$, which is Option B, but we are asked to find the sum of distinct values of $\mu $. So, one must read the question carefully and solve the problem.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

