
The sum of $ \dfrac{{{1^2}}}{{1.3}} + \dfrac{{{2^2}}}{{3.5}} + \dfrac{{{3^2}}}{{5.7}} + .... + \dfrac{{{n^2}}}{{(2n - 1)(2n + 1)}} $ is:
A) $\dfrac{{(2{n^2} + 1)}}{{2n + 1}}$
B) $\dfrac{{n(n + 1)}}{{2(2n + 1)}}$
C) $\dfrac{{(2{n^2} + 1)}}{{4(2n + 1)}}$
D) None of these
Answer
509.4k+ views
Hint: We have to find the sum of the following series, as we can judge the sequence of the numbers by the last number in the sequence which is in terms of $n$, and is the ${n^{th}}$ term in the sequence. Since the denominator is factorized we will try to do the partial decomposition method to break this into partial fractions which can then be solved using simple methods for the sum upto $n$ terms.
Complete step by step answer:
We can judge from the sequence :
$ \dfrac{{{1^2}}}{{1.3}} + \dfrac{{{2^2}}}{{3.5}} + \dfrac{{{3^2}}}{{5.7}} + .... + \dfrac{{{n^2}}}{{(2n - 1)(2n + 1)}} \\
\\
$
That the ${n^{th}}$ term in the sequence is given by,
\[{t_n}\; = {\text{ }}\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\]
We will now break this by partial decomposition method as below:
\[{t_{n\;}} = {\text{ }}\dfrac{1}{4}{\text{ }} + {\text{ }}\dfrac{1}{{8\left( {2n - 1} \right)}}{\text{ }} - \dfrac{1}{{8\left( {2n + 1} \right)}}\]
The sum will now depend on three factors first being the number $\dfrac{1}{4}$ this will be simple as it will be added $n$ times.
The other two factors will be solved for first $2$ or $3$ iterations and we will see a patter emerge and then solve the question further.
\[{S_n}\; = {\text{ }}\left( {\dfrac{n}{4}} \right){\text{ }} + {\text{ }}\left( {\dfrac{1}{8}} \right)\left( {1 - {\text{ }}\dfrac{1}{3}{\text{ }} + {\text{ }}\dfrac{1}{3}{\text{ }} - \dfrac{1}{5}{\text{ }} + {\text{ }}\dfrac{1}{5}{\text{ }} - \dfrac{1}{7}{\text{ }} + \ldots .\dfrac{1}{{\left( {2n - 1} \right)}}{\text{ }}-{\text{ }}\dfrac{1}{{\left( {2n + 1} \right)}}} \right]\]
We thus see that on adding in the second term only the last expression remains all other are cancelled except $1$ . thus the next step will be:
\[{S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{8}} \right){\text{ }}\left[ {{\text{ }}1{\text{ }}-{\text{ }}\dfrac{1}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{8}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{2n + 1 - 1}}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{8}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{2n}}{{\left( {2n + 1} \right)}}} \right]\]
Solving it further we get,
\[{S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{n}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{n}{{\left( {2n + 1} \right)}} + n} \right]\]
\[\Rightarrow {S_n} = \left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{n(2n + 1) + n}}{{\left( {2n + 1} \right)}}} \right]\]
Solving the brackets we will get a quadratic equation as,
\[{S_n} = \left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{2{n^2} + 2n}}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \left( {\dfrac{1}{2}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{n(n + 1)}}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{{2(2n + 1)}}\]
Hence, option (B) is the correct option.
Note:
We have done the partial decomposition of $\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}$ as follows:
First the long division method render the fraction as,
\[\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{4} + \dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\]
Solving the second expression we get,
$\dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{{4\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{{16{n^2} - 4}}$
Factorizing the denominator we get,
$\dfrac{1}{{16{n^2} - 4}} = \dfrac{1}{{4\left( {2n - 1} \right)\left( {2n + 1} \right)}}$
The partial fraction will now be done as:
\[\dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{A}{{2n + 1}} + \dfrac{B}{{2n - 1}}\]
Solving we will get value of A and B as
$A = - \dfrac{1}{8}$ and $B = \dfrac{1}{8}$
Therefore we can write,
\[\dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{{ - \dfrac{1}{8}}}{{2n + 1}} + \dfrac{{\dfrac{1}{8}}}{{2n - 1}}\]
Since this was the second expression we were evaluating the full expression becomes:
$\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{4} + \dfrac{{ - \dfrac{1}{8}}}{{2n + 1}} + \dfrac{{\dfrac{1}{8}}}{{2n - 1}}$
Complete step by step answer:
We can judge from the sequence :
$ \dfrac{{{1^2}}}{{1.3}} + \dfrac{{{2^2}}}{{3.5}} + \dfrac{{{3^2}}}{{5.7}} + .... + \dfrac{{{n^2}}}{{(2n - 1)(2n + 1)}} \\
\\
$
That the ${n^{th}}$ term in the sequence is given by,
\[{t_n}\; = {\text{ }}\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\]
We will now break this by partial decomposition method as below:
\[{t_{n\;}} = {\text{ }}\dfrac{1}{4}{\text{ }} + {\text{ }}\dfrac{1}{{8\left( {2n - 1} \right)}}{\text{ }} - \dfrac{1}{{8\left( {2n + 1} \right)}}\]
The sum will now depend on three factors first being the number $\dfrac{1}{4}$ this will be simple as it will be added $n$ times.
The other two factors will be solved for first $2$ or $3$ iterations and we will see a patter emerge and then solve the question further.
\[{S_n}\; = {\text{ }}\left( {\dfrac{n}{4}} \right){\text{ }} + {\text{ }}\left( {\dfrac{1}{8}} \right)\left( {1 - {\text{ }}\dfrac{1}{3}{\text{ }} + {\text{ }}\dfrac{1}{3}{\text{ }} - \dfrac{1}{5}{\text{ }} + {\text{ }}\dfrac{1}{5}{\text{ }} - \dfrac{1}{7}{\text{ }} + \ldots .\dfrac{1}{{\left( {2n - 1} \right)}}{\text{ }}-{\text{ }}\dfrac{1}{{\left( {2n + 1} \right)}}} \right]\]
We thus see that on adding in the second term only the last expression remains all other are cancelled except $1$ . thus the next step will be:
\[{S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{8}} \right){\text{ }}\left[ {{\text{ }}1{\text{ }}-{\text{ }}\dfrac{1}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{8}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{2n + 1 - 1}}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{8}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{2n}}{{\left( {2n + 1} \right)}}} \right]\]
Solving it further we get,
\[{S_n} = \dfrac{n}{4} + {\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{n}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{n}{{\left( {2n + 1} \right)}} + n} \right]\]
\[\Rightarrow {S_n} = \left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{n(2n + 1) + n}}{{\left( {2n + 1} \right)}}} \right]\]
Solving the brackets we will get a quadratic equation as,
\[{S_n} = \left( {\dfrac{1}{4}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{2{n^2} + 2n}}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \left( {\dfrac{1}{2}} \right){\text{ }}\left[ {{\text{ }}\dfrac{{n(n + 1)}}{{\left( {2n + 1} \right)}}} \right]\]
\[\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{{2(2n + 1)}}\]
Hence, option (B) is the correct option.
Note:
We have done the partial decomposition of $\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}$ as follows:
First the long division method render the fraction as,
\[\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{4} + \dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\]
Solving the second expression we get,
$\dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{{4\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{{16{n^2} - 4}}$
Factorizing the denominator we get,
$\dfrac{1}{{16{n^2} - 4}} = \dfrac{1}{{4\left( {2n - 1} \right)\left( {2n + 1} \right)}}$
The partial fraction will now be done as:
\[\dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{A}{{2n + 1}} + \dfrac{B}{{2n - 1}}\]
Solving we will get value of A and B as
$A = - \dfrac{1}{8}$ and $B = \dfrac{1}{8}$
Therefore we can write,
\[\dfrac{{\dfrac{1}{4}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{{ - \dfrac{1}{8}}}{{2n + 1}} + \dfrac{{\dfrac{1}{8}}}{{2n - 1}}\]
Since this was the second expression we were evaluating the full expression becomes:
$\dfrac{{{n^2}}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}} = \dfrac{1}{4} + \dfrac{{ - \dfrac{1}{8}}}{{2n + 1}} + \dfrac{{\dfrac{1}{8}}}{{2n - 1}}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

