
The sum of coefficients of all even degree terms in \[x\] in the expansion of \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\] is
A.32
B.26
C.29
D.24
Answer
568.8k+ views
Hint: Here, we will use the formula,\[{\left( {a + b} \right)^n} + {\left( {a - b} \right)^n} = 2\left( {{}^n{C_0}{a^n} + {}^n{C_2}{a^{n - 2}} + {}^n{C_4}{a^{n - 4}}{b^4} + ...} \right)\] in the given expression and then we will use formula to calculate combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the equation. Then we will simplify to find the required value.
Complete step-by-step answer:
We are given that the expression is \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\].
We will use the formula,\[{\left( {a + b} \right)^n} + {\left( {a - b} \right)^n} = 2\left( {{}^n{C_0}{a^n} + {}^n{C_2}{a^{n - 2}} + {}^n{C_4}{a^{n - 4}}{b^4} + ...} \right)\] in the given expression.
Finding the value of \[a\], \[b\] and \[n\] from the given expression, we get
\[a = x\]
\[b = \sqrt {{x^3} - 1} \]
\[n = 6\]
Using the above values in the above formula, we get
\[
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^{6 - 2}}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^{6 - 4}}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^4}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^2}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^2}\left( {{x^6} + 1 - 2{x^3}} \right) + {}^6{C_6}\left( {{x^9} - 1 - 3{x^6} + 3{x^3}} \right)} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^8} + {}^6{C_4}{x^2} - {}^6{C_4}2{x^5} + {}^6{C_6}{x^9} - {}^6{C_6} - {}^6{C_6}3{x^6} + {}^6{C_6}3{x^3}} \right) \\
\]
Using formula to calculate combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the above equation, we get
\[
\Rightarrow 2\left( {\dfrac{{6!}}{{6!}}{x^6} + \dfrac{{6!}}{{2!4!}}{x^7} - \dfrac{{6!}}{{2!4!}}{x^4} + \dfrac{{6!}}{{4!2!}}{x^8} + \dfrac{{6!}}{{4!2!}}{x^2} - \dfrac{{6!}}{{4!2!}}2{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\Rightarrow 2\left( {{x^6} + 6{x^7} - 15{x^4} + 15{x^8} + 15{x^2} - 30{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\]
Finding the sum of coefficient of even powers from the above expression, we get
\[
\Rightarrow 2\left[ {1 - 15 + 15 + 15 - 1 - 3} \right] \\
\Rightarrow 2\left[ {12} \right] \\
\Rightarrow 24 \\
\]
Therefore, sum of coefficients of all even degree terms in \[x\] in the expansion of \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\] is 24.
Hence, option D is correct.
Note: In solving these types of questions, you should be familiar with the formula of the area of the rectangle. Then use the given conditions and values given in the question, and substitute in the formula, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the equation. Then we will simplify to find the required value.
Complete step-by-step answer:
We are given that the expression is \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\].
We will use the formula,\[{\left( {a + b} \right)^n} + {\left( {a - b} \right)^n} = 2\left( {{}^n{C_0}{a^n} + {}^n{C_2}{a^{n - 2}} + {}^n{C_4}{a^{n - 4}}{b^4} + ...} \right)\] in the given expression.
Finding the value of \[a\], \[b\] and \[n\] from the given expression, we get
\[a = x\]
\[b = \sqrt {{x^3} - 1} \]
\[n = 6\]
Using the above values in the above formula, we get
\[
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^{6 - 2}}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^{6 - 4}}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^4}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^2}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^2}\left( {{x^6} + 1 - 2{x^3}} \right) + {}^6{C_6}\left( {{x^9} - 1 - 3{x^6} + 3{x^3}} \right)} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^8} + {}^6{C_4}{x^2} - {}^6{C_4}2{x^5} + {}^6{C_6}{x^9} - {}^6{C_6} - {}^6{C_6}3{x^6} + {}^6{C_6}3{x^3}} \right) \\
\]
Using formula to calculate combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the above equation, we get
\[
\Rightarrow 2\left( {\dfrac{{6!}}{{6!}}{x^6} + \dfrac{{6!}}{{2!4!}}{x^7} - \dfrac{{6!}}{{2!4!}}{x^4} + \dfrac{{6!}}{{4!2!}}{x^8} + \dfrac{{6!}}{{4!2!}}{x^2} - \dfrac{{6!}}{{4!2!}}2{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\Rightarrow 2\left( {{x^6} + 6{x^7} - 15{x^4} + 15{x^8} + 15{x^2} - 30{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\]
Finding the sum of coefficient of even powers from the above expression, we get
\[
\Rightarrow 2\left[ {1 - 15 + 15 + 15 - 1 - 3} \right] \\
\Rightarrow 2\left[ {12} \right] \\
\Rightarrow 24 \\
\]
Therefore, sum of coefficients of all even degree terms in \[x\] in the expansion of \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\] is 24.
Hence, option D is correct.
Note: In solving these types of questions, you should be familiar with the formula of the area of the rectangle. Then use the given conditions and values given in the question, and substitute in the formula, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

