Answer
Verified
427.8k+ views
Hint: Here, we will use the formula,\[{\left( {a + b} \right)^n} + {\left( {a - b} \right)^n} = 2\left( {{}^n{C_0}{a^n} + {}^n{C_2}{a^{n - 2}} + {}^n{C_4}{a^{n - 4}}{b^4} + ...} \right)\] in the given expression and then we will use formula to calculate combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the equation. Then we will simplify to find the required value.
Complete step-by-step answer:
We are given that the expression is \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\].
We will use the formula,\[{\left( {a + b} \right)^n} + {\left( {a - b} \right)^n} = 2\left( {{}^n{C_0}{a^n} + {}^n{C_2}{a^{n - 2}} + {}^n{C_4}{a^{n - 4}}{b^4} + ...} \right)\] in the given expression.
Finding the value of \[a\], \[b\] and \[n\] from the given expression, we get
\[a = x\]
\[b = \sqrt {{x^3} - 1} \]
\[n = 6\]
Using the above values in the above formula, we get
\[
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^{6 - 2}}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^{6 - 4}}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^4}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^2}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^2}\left( {{x^6} + 1 - 2{x^3}} \right) + {}^6{C_6}\left( {{x^9} - 1 - 3{x^6} + 3{x^3}} \right)} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^8} + {}^6{C_4}{x^2} - {}^6{C_4}2{x^5} + {}^6{C_6}{x^9} - {}^6{C_6} - {}^6{C_6}3{x^6} + {}^6{C_6}3{x^3}} \right) \\
\]
Using formula to calculate combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the above equation, we get
\[
\Rightarrow 2\left( {\dfrac{{6!}}{{6!}}{x^6} + \dfrac{{6!}}{{2!4!}}{x^7} - \dfrac{{6!}}{{2!4!}}{x^4} + \dfrac{{6!}}{{4!2!}}{x^8} + \dfrac{{6!}}{{4!2!}}{x^2} - \dfrac{{6!}}{{4!2!}}2{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\Rightarrow 2\left( {{x^6} + 6{x^7} - 15{x^4} + 15{x^8} + 15{x^2} - 30{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\]
Finding the sum of coefficient of even powers from the above expression, we get
\[
\Rightarrow 2\left[ {1 - 15 + 15 + 15 - 1 - 3} \right] \\
\Rightarrow 2\left[ {12} \right] \\
\Rightarrow 24 \\
\]
Therefore, sum of coefficients of all even degree terms in \[x\] in the expansion of \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\] is 24.
Hence, option D is correct.
Note: In solving these types of questions, you should be familiar with the formula of the area of the rectangle. Then use the given conditions and values given in the question, and substitute in the formula, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the equation. Then we will simplify to find the required value.
Complete step-by-step answer:
We are given that the expression is \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\].
We will use the formula,\[{\left( {a + b} \right)^n} + {\left( {a - b} \right)^n} = 2\left( {{}^n{C_0}{a^n} + {}^n{C_2}{a^{n - 2}} + {}^n{C_4}{a^{n - 4}}{b^4} + ...} \right)\] in the given expression.
Finding the value of \[a\], \[b\] and \[n\] from the given expression, we get
\[a = x\]
\[b = \sqrt {{x^3} - 1} \]
\[n = 6\]
Using the above values in the above formula, we get
\[
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^{6 - 2}}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^{6 - 4}}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^4}\left( {{x^3} - 1} \right) + {}^6{C_4}{x^2}{{\left( {{x^3} - 1} \right)}^2} + {}^6{C_6}{{\left( {{x^3} - 1} \right)}^3}} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^2}\left( {{x^6} + 1 - 2{x^3}} \right) + {}^6{C_6}\left( {{x^9} - 1 - 3{x^6} + 3{x^3}} \right)} \right) \\
\Rightarrow 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^7} - {}^6{C_2}{x^4} + {}^6{C_4}{x^8} + {}^6{C_4}{x^2} - {}^6{C_4}2{x^5} + {}^6{C_6}{x^9} - {}^6{C_6} - {}^6{C_6}3{x^6} + {}^6{C_6}3{x^3}} \right) \\
\]
Using formula to calculate combinations is \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, in the above equation, we get
\[
\Rightarrow 2\left( {\dfrac{{6!}}{{6!}}{x^6} + \dfrac{{6!}}{{2!4!}}{x^7} - \dfrac{{6!}}{{2!4!}}{x^4} + \dfrac{{6!}}{{4!2!}}{x^8} + \dfrac{{6!}}{{4!2!}}{x^2} - \dfrac{{6!}}{{4!2!}}2{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\Rightarrow 2\left( {{x^6} + 6{x^7} - 15{x^4} + 15{x^8} + 15{x^2} - 30{x^5} + {x^9} - 1 - 3{x^6} + 3{x^3}} \right) \\
\]
Finding the sum of coefficient of even powers from the above expression, we get
\[
\Rightarrow 2\left[ {1 - 15 + 15 + 15 - 1 - 3} \right] \\
\Rightarrow 2\left[ {12} \right] \\
\Rightarrow 24 \\
\]
Therefore, sum of coefficients of all even degree terms in \[x\] in the expansion of \[{\left( {x + \sqrt {{x^3} - 1} } \right)^6} + {\left( {x - \sqrt {{x^3} - 1} } \right)^6},\left( {x > 1} \right)\] is 24.
Hence, option D is correct.
Note: In solving these types of questions, you should be familiar with the formula of the area of the rectangle. Then use the given conditions and values given in the question, and substitute in the formula, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell