
The sum of an infinite geometric series whose first term is the limit of the function $f\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$ as $x \Rightarrow 0$ and whose common ratio is the limit of the function $g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$ as $x \Rightarrow 1$ is
A. $\dfrac{1}{3}$
B. $\dfrac{1}{4}$
C. $\dfrac{1}{2}$
D. $\dfrac{2}{3}$
Answer
555k+ views
Hint: First find the limits of the given two functions and limit of $f\left( x \right)$ is a (the first term of G.P) and limit of $g\left( x \right)$ is r (Common ratio of G.P). Sum of infinite terms of a Geometric progression is given by the below mentioned formula.
Formulas used:
1. Sum of infinite terms of a G.P is $\dfrac{a}{{1 - r}}$ where a is the first term and r is the common ratio and r must be greater than -1 and less than 1.
2. $\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\sin x}}{x} = 1$
Complete step-by-step answer:
We are given that the limit of the function $f\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$ as $x \Rightarrow 0$ is the first term and limit of the function $g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$ as $x \Rightarrow 1$ is the common ratio of an infinite geometric series.
We have to find the sum of this infinite geometric series.
Limit of the function $f\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$ as $x \Rightarrow 0$ is $\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$
$\tan x$ can also be written as $\dfrac{{\sin x}}{{\cos x}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{{\sin x}}{{\cos x}}} \right) - \sin x}}{{\sin x\left( {{{\sin }^2}x} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{1}{{\cos x}}} \right) - 1}}{{\left( {{{\sin }^2}x} \right)}} = \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{{1 - \cos x}}{{\cos x}}} \right)}}{{\left( {{{\sin }^2}x} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {{{\sin }^2}x} \right)}}$
We know that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {1 - {{\cos }^2}x} \right)}} = \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {1 - \cos x} \right)\left( {1 + \cos x} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{1}{{\cos x\left( {1 + \cos x} \right)}}$, $\cos 0 = 1$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{1}{{\cos x\left( {1 + \cos x} \right)}} = \dfrac{1}{{\cos 0\left( {1 + \cos 0} \right)}} = \dfrac{1}{2}$
The first term of the series is $\dfrac{1}{2}$
Limit of the function $g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$ as $x \Rightarrow 1$ is $\mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$
Multiply and divide the limit with $1 + \sqrt x $
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}\left( {1 + \sqrt x } \right)}} = \dfrac{1}{{\left( {1 + \sqrt 1 } \right)}}\mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{1 - x}}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$ as $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
Let ${\cos ^{ - 1}}x = t$, this gives $x = \cos t$ and the limit changes from $x \Rightarrow 1$ to $t \Rightarrow 0$ as ${\cos ^{ - 1}}1$ is equal to zero.
Substitute the values of x and ${\cos ^{ - 1}}x$
$ \Rightarrow \dfrac{1}{2}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{1 - \cos t}}{{{t^2}}}$
We can write $\cos t$ as $1 - 2{\sin ^2}\dfrac{t}{2}$
$ \Rightarrow \dfrac{1}{2}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{1 - \left( {1 - 2{{\sin }^2}\left( {\dfrac{t}{2}} \right)} \right)}}{{{t^2}}} = \dfrac{{2{{\sin }^2}\left( {\dfrac{t}{2}} \right)}}{t}$
Multiplying and dividing with $\dfrac{1}{4}$
$ \Rightarrow \dfrac{1}{2} \times 2 \times \dfrac{1}{4}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right) \times \sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right) \times \left( {\dfrac{t}{2}} \right)}} = \dfrac{1}{4} \times 1 \times 1$ as $\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\sin x}}{x} = 1$ is equal to $\dfrac{1}{4}$
Therefore, the common ratio of the series is $\dfrac{1}{4}$
The sum of the infinite terms of the geometric series will be $\dfrac{a}{{1 - r}} = \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}} = \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{3}{4}} \right)}} = \dfrac{1}{2} \times \dfrac{4}{3} = \dfrac{2}{3}$
Hence, the correct option is Option D, $\dfrac{2}{3}$
So, the correct answer is “Option D”.
Note: When the common ratio is greater than 1 the geometric series does not have a sum, which means the sum cannot be determined. Only when the common ratio is between -1 and 1 the above formula is applicable. Do not confuse the formulas of G.P with the formulas of A.P.
Formulas used:
1. Sum of infinite terms of a G.P is $\dfrac{a}{{1 - r}}$ where a is the first term and r is the common ratio and r must be greater than -1 and less than 1.
2. $\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\sin x}}{x} = 1$
Complete step-by-step answer:
We are given that the limit of the function $f\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$ as $x \Rightarrow 0$ is the first term and limit of the function $g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$ as $x \Rightarrow 1$ is the common ratio of an infinite geometric series.
We have to find the sum of this infinite geometric series.
Limit of the function $f\left( x \right) = \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$ as $x \Rightarrow 0$ is $\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\tan x - \sin x}}{{{{\sin }^3}x}}$
$\tan x$ can also be written as $\dfrac{{\sin x}}{{\cos x}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{{\sin x}}{{\cos x}}} \right) - \sin x}}{{\sin x\left( {{{\sin }^2}x} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{1}{{\cos x}}} \right) - 1}}{{\left( {{{\sin }^2}x} \right)}} = \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\left( {\dfrac{{1 - \cos x}}{{\cos x}}} \right)}}{{\left( {{{\sin }^2}x} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {{{\sin }^2}x} \right)}}$
We know that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {1 - {{\cos }^2}x} \right)}} = \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{1 - \cos x}}{{\cos x\left( {1 - \cos x} \right)\left( {1 + \cos x} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{1}{{\cos x\left( {1 + \cos x} \right)}}$, $\cos 0 = 1$
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{1}{{\cos x\left( {1 + \cos x} \right)}} = \dfrac{1}{{\cos 0\left( {1 + \cos 0} \right)}} = \dfrac{1}{2}$
The first term of the series is $\dfrac{1}{2}$
Limit of the function $g\left( x \right) = \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$ as $x \Rightarrow 1$ is $\mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{1 - \sqrt x }}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$
Multiply and divide the limit with $1 + \sqrt x $
$ \Rightarrow \mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}\left( {1 + \sqrt x } \right)}} = \dfrac{1}{{\left( {1 + \sqrt 1 } \right)}}\mathop {\lim }\limits_{x \Rightarrow 1} \dfrac{{1 - x}}{{{{\left( {{{\cos }^{ - 1}}x} \right)}^2}}}$ as $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
Let ${\cos ^{ - 1}}x = t$, this gives $x = \cos t$ and the limit changes from $x \Rightarrow 1$ to $t \Rightarrow 0$ as ${\cos ^{ - 1}}1$ is equal to zero.
Substitute the values of x and ${\cos ^{ - 1}}x$
$ \Rightarrow \dfrac{1}{2}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{1 - \cos t}}{{{t^2}}}$
We can write $\cos t$ as $1 - 2{\sin ^2}\dfrac{t}{2}$
$ \Rightarrow \dfrac{1}{2}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{1 - \left( {1 - 2{{\sin }^2}\left( {\dfrac{t}{2}} \right)} \right)}}{{{t^2}}} = \dfrac{{2{{\sin }^2}\left( {\dfrac{t}{2}} \right)}}{t}$
Multiplying and dividing with $\dfrac{1}{4}$
$ \Rightarrow \dfrac{1}{2} \times 2 \times \dfrac{1}{4}\mathop {\lim }\limits_{t \Rightarrow 0} \dfrac{{\sin \left( {\dfrac{t}{2}} \right) \times \sin \left( {\dfrac{t}{2}} \right)}}{{\left( {\dfrac{t}{2}} \right) \times \left( {\dfrac{t}{2}} \right)}} = \dfrac{1}{4} \times 1 \times 1$ as $\mathop {\lim }\limits_{x \Rightarrow 0} \dfrac{{\sin x}}{x} = 1$ is equal to $\dfrac{1}{4}$
Therefore, the common ratio of the series is $\dfrac{1}{4}$
The sum of the infinite terms of the geometric series will be $\dfrac{a}{{1 - r}} = \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}} = \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{3}{4}} \right)}} = \dfrac{1}{2} \times \dfrac{4}{3} = \dfrac{2}{3}$
Hence, the correct option is Option D, $\dfrac{2}{3}$
So, the correct answer is “Option D”.
Note: When the common ratio is greater than 1 the geometric series does not have a sum, which means the sum cannot be determined. Only when the common ratio is between -1 and 1 the above formula is applicable. Do not confuse the formulas of G.P with the formulas of A.P.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

