
The sum of all exterior angles of a triangle is
A.\[{{360}^{0}}\]
B.\[{{180}^{0}}\]
C.\[{{540}^{0}}\]
D.None of these
Answer
590.4k+ views
Hint: Assume a \[\Delta ABC\] in which \[\angle A=\alpha \] , \[\angle B=\beta \] , and \[\angle C=\gamma \] . We know the property that the measure of an exterior angle of a triangle is equal to the sum of the opposite interior angles. Now, using the property we can say that the exterior angle \[\angle ACP\] is equal to the summation of the angles \[\alpha \] and \[\beta \] , \[\angle BAQ\] is equal to the summation of the angles \[\gamma \] and \[\beta \] , and \[\angle CBR\] is equal to the summation of the angles \[\alpha \] and \[\gamma \] .
Complete step-by-step answer:
Assume a \[\Delta ABC\] in which \[\angle A=\alpha \] , \[\angle B=\beta \] , and \[\angle C=\gamma \] .
For the angles \[\alpha \] and \[\beta \] , \[\angle ACP\] is an exterior angle.
We know the property that the measure of an exterior angle of a triangle is equal to the sum of the opposite interior angles.
Now, using the property we can say that the exterior angle \[\angle ACP\] is equal to the summation of the angles \[\alpha \] and \[\beta \] .
\[\angle ACP=~\alpha +\beta \] …………………(1)
For the angles \[\gamma \] and \[\beta \] , \[\angle BAQ\] is an exterior angle.
We know the property that the measure of an exterior angle of a triangle is equal to the sum of the opposite interior angles.
Now, using the property we can say that the exterior angle \[\angle BAQ\] is equal to the summation of the angles \[\gamma \] and \[\beta \] .
\[\angle BAQ=~\gamma +\beta \] …………………(2)
For the angles \[\alpha \] and \[\gamma \] , \[\angle CBR\] is an exterior angle.
We know the property that the measure of an exterior angle of a triangle is equal to the sum of the opposite interior angles.
Now, using the property we can say that the exterior angle \[\angle CBR\] is equal to the summation of the angles \[\alpha \] and \[\gamma \] .
\[\angle CBR=~\alpha +\gamma \] …………………(3)
For the \[\Delta ABC\] exterior angles are \[\angle CBR\] , \[\angle BAQ\] , and \[\angle ACP\] .
Now, the sum of all exterior angles,
\[~\angle ACP+\angle BAQ+\angle CBR\] ………………………(4)
From equation (1), equation (2), equation (3), and equation (4), we get
\[\begin{align}
& ~\angle ACP+\angle BAQ+\angle CBR \\
& =~\alpha +\beta +~\gamma +\beta +~\alpha +\gamma \\
\end{align}\]
\[=2(\alpha +\beta +\gamma )\] ………………(5)
We know that the sum of all interior angles of a triangle is \[{{180}^{0}}\] .
That is,
\[(\alpha +\beta +\gamma )={{180}^{0}}\] …………………..(6)
From equation (5) and equation (6), we get
\[\begin{align}
& =2(\alpha +\beta +\gamma ) \\
& =2\times {{180}^{0}} \\
& ={{360}^{0}} \\
\end{align}\]
So, the sum of all exterior angles of a triangle is \[{{360}^{0}}\] .
Hence, the correct option is A.
Note: We can also solve this question by using linear pair angles.
Assume a \[\Delta ABC\] in which \[\angle A=\alpha \] , \[\angle B=\beta \] , and \[\angle C=\gamma \] .
Here, \[\angle ACB\] and \[\angle ACP\] are linear pair angles.
So, \[\angle ACB+\angle ACP={{180}^{0}}\]
\[\angle ACP=~{{180}^{0}}-\gamma \] ……………(1)
Here, \[\angle BAQ\] and \[\angle BAC\] are also linear pair angles.
So, \[\angle BAQ+\angle BAC={{180}^{0}}\]
\[\angle BAQ=~{{180}^{0}}-\alpha \] ……………(2)
Here, \[\angle CBR\]and \[\angle CBA\] are linear pair angles.
So, \[\angle CBR+\angle CBA={{180}^{0}}\]
\[\angle CBR=~{{180}^{0}}-\beta \] ……………(3)
From equation (1), equation (2), and equation (3),
\[\begin{align}
& ~\angle ACP+\angle BAQ+\angle CBR \\
& =~~{{180}^{0}}-\gamma +{{180}^{0}}-\alpha +{{180}^{0}}-\beta \\
\end{align}\]
\[={{540}^{0}}-(\alpha +\beta +\gamma )\] ………………….(4)
We know that the sum of all interior angles of a triangle is \[{{180}^{0}}\] .
That is,
\[(\alpha +\beta +\gamma )={{180}^{0}}\] ………………….(5)
From equation (4) and equation (5),
\[\begin{align}
& ={{540}^{0}}-(\alpha +\beta +\gamma ) \\
& ={{540}^{0}}-{{180}^{0}} \\
& ={{360}^{0}} \\
\end{align}\]
So, the sum of all exterior angles of a triangle is \[{{360}^{0}}\] .
Complete step-by-step answer:
Assume a \[\Delta ABC\] in which \[\angle A=\alpha \] , \[\angle B=\beta \] , and \[\angle C=\gamma \] .
For the angles \[\alpha \] and \[\beta \] , \[\angle ACP\] is an exterior angle.
We know the property that the measure of an exterior angle of a triangle is equal to the sum of the opposite interior angles.
Now, using the property we can say that the exterior angle \[\angle ACP\] is equal to the summation of the angles \[\alpha \] and \[\beta \] .
\[\angle ACP=~\alpha +\beta \] …………………(1)
For the angles \[\gamma \] and \[\beta \] , \[\angle BAQ\] is an exterior angle.
We know the property that the measure of an exterior angle of a triangle is equal to the sum of the opposite interior angles.
Now, using the property we can say that the exterior angle \[\angle BAQ\] is equal to the summation of the angles \[\gamma \] and \[\beta \] .
\[\angle BAQ=~\gamma +\beta \] …………………(2)
For the angles \[\alpha \] and \[\gamma \] , \[\angle CBR\] is an exterior angle.
We know the property that the measure of an exterior angle of a triangle is equal to the sum of the opposite interior angles.
Now, using the property we can say that the exterior angle \[\angle CBR\] is equal to the summation of the angles \[\alpha \] and \[\gamma \] .
\[\angle CBR=~\alpha +\gamma \] …………………(3)
For the \[\Delta ABC\] exterior angles are \[\angle CBR\] , \[\angle BAQ\] , and \[\angle ACP\] .
Now, the sum of all exterior angles,
\[~\angle ACP+\angle BAQ+\angle CBR\] ………………………(4)
From equation (1), equation (2), equation (3), and equation (4), we get
\[\begin{align}
& ~\angle ACP+\angle BAQ+\angle CBR \\
& =~\alpha +\beta +~\gamma +\beta +~\alpha +\gamma \\
\end{align}\]
\[=2(\alpha +\beta +\gamma )\] ………………(5)
We know that the sum of all interior angles of a triangle is \[{{180}^{0}}\] .
That is,
\[(\alpha +\beta +\gamma )={{180}^{0}}\] …………………..(6)
From equation (5) and equation (6), we get
\[\begin{align}
& =2(\alpha +\beta +\gamma ) \\
& =2\times {{180}^{0}} \\
& ={{360}^{0}} \\
\end{align}\]
So, the sum of all exterior angles of a triangle is \[{{360}^{0}}\] .
Hence, the correct option is A.
Note: We can also solve this question by using linear pair angles.
Assume a \[\Delta ABC\] in which \[\angle A=\alpha \] , \[\angle B=\beta \] , and \[\angle C=\gamma \] .
Here, \[\angle ACB\] and \[\angle ACP\] are linear pair angles.
So, \[\angle ACB+\angle ACP={{180}^{0}}\]
\[\angle ACP=~{{180}^{0}}-\gamma \] ……………(1)
Here, \[\angle BAQ\] and \[\angle BAC\] are also linear pair angles.
So, \[\angle BAQ+\angle BAC={{180}^{0}}\]
\[\angle BAQ=~{{180}^{0}}-\alpha \] ……………(2)
Here, \[\angle CBR\]and \[\angle CBA\] are linear pair angles.
So, \[\angle CBR+\angle CBA={{180}^{0}}\]
\[\angle CBR=~{{180}^{0}}-\beta \] ……………(3)
From equation (1), equation (2), and equation (3),
\[\begin{align}
& ~\angle ACP+\angle BAQ+\angle CBR \\
& =~~{{180}^{0}}-\gamma +{{180}^{0}}-\alpha +{{180}^{0}}-\beta \\
\end{align}\]
\[={{540}^{0}}-(\alpha +\beta +\gamma )\] ………………….(4)
We know that the sum of all interior angles of a triangle is \[{{180}^{0}}\] .
That is,
\[(\alpha +\beta +\gamma )={{180}^{0}}\] ………………….(5)
From equation (4) and equation (5),
\[\begin{align}
& ={{540}^{0}}-(\alpha +\beta +\gamma ) \\
& ={{540}^{0}}-{{180}^{0}} \\
& ={{360}^{0}} \\
\end{align}\]
So, the sum of all exterior angles of a triangle is \[{{360}^{0}}\] .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

