
The sum of $50$ terms of the series $1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^3} + ....$ is given by
A) $2550$
B) $2500$
C) $2450$
D) None of these
Answer
462.3k+ views
Hint: In the question, we are required to find the sum of an arithmetic geometric progression. So, we follow a structured method to find the same. Arithmetic geometric progression is a series whose terms involve the product of two types of terms. One term is in arithmetic progression and the other one is in geometric progression.
Complete step by step solution:
We need to find the sum of the given arithmetic geometric progression up to fifty terms.
So, \[S = 1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^3} + ....50{\left( {1 + \dfrac{1}{{50}}} \right)^{49}}\]
In this arithmetic geometric progression, the \[\left( {1 + \dfrac{1}{{50}}} \right)\] component is in geometric progression and constant term is arithmetic progression.
Hence, we multiply both sides of the equation by common ratio of the geometric progressive terms, \[\left( {1 + \dfrac{1}{{50}}} \right)\].
So, $S = 1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^3} + ....50{\left( {1 + \dfrac{1}{{50}}} \right)^{49}} - - - - - - - - (1)$
$ \Rightarrow \left( {1 + \dfrac{1}{{50}}} \right)S = \left( {1 + \dfrac{1}{{50}}} \right)\left[ {1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + 4{{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + ....50{{\left( {1 + \dfrac{1}{{50}}} \right)}^{49}}} \right]$
Opening the bracket and simplifying, we get,
$ \Rightarrow \left( {1 + \dfrac{1}{{50}}} \right)S = \left( {1 + \dfrac{1}{{50}}} \right) + 2{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 3{\left( {1 + \dfrac{1}{{50}}} \right)^3} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^4} + ....50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}$
Now, subtracting $(2)$ from $(1)$, we get,
\[ \Rightarrow S - \left( {1 + \dfrac{1}{{50}}} \right)S = \left[ {1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + 4{{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + ....50{{\left( {1 + \dfrac{1}{{50}}} \right)}^{49}}} \right] - \left[ {\left( {1 + \dfrac{1}{{50}}} \right) + 2{{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + 3{{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + 4{{\left( {1 + \dfrac{1}{{50}}} \right)}^4} + ....50{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}}} \right]\]\[ \Rightarrow S - S - \dfrac{S}{{50}} = \left[ {1 + \left( {1 + \dfrac{1}{{50}}} \right) + {{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + {{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + ....{{\left( {1 + \dfrac{1}{{50}}} \right)}^{49}}} \right] - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
The term contained in square brackets is a geometric progression. Hence, we can find the sum of n terms of a geometric progression by formula: $a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$
\[ \Rightarrow - \dfrac{S}{{50}} = 1\dfrac{{\left( {{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}} - 1} \right)}}{{\left( {\left( {1 + \dfrac{1}{{50}}} \right) - 1} \right)}} - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
Simplifying further, we get,
\[ \Rightarrow - \dfrac{S}{{50}} = \dfrac{{\left( {{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}} - 1} \right)}}{{\left( {1 + \dfrac{1}{{50}} - 1} \right)}} - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
\[ \Rightarrow - \dfrac{S}{{50}} = 50\left( {{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}} - 1} \right) - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
\[ \Rightarrow - \dfrac{S}{{50}} = 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}} - 50 - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
Cancelling terms having same magnitude and opposite signs, we get,
\[ \Rightarrow - \dfrac{S}{{50}} = - 50\]
Cross multiplying the terms to find the value of S, we get,
\[ \Rightarrow S = 2500\]
Therefore, the sum of fifty terms of the series $1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^3} + ....$ is $2500$. Hence, option (B) is the correct answer.
Note:
The method involved in the problem given to us must be remembered as it is a standard method that can be applied in various questions involving arithmetic geometric progressions or any other type of special series or progression. We also must remember the formula for finding the sum of n terms of a geometric progression: $a\dfrac{{\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$ and the formula for finding the sum of an infinite geometric progression $\dfrac{a}{{1 - r}}$.
Complete step by step solution:
We need to find the sum of the given arithmetic geometric progression up to fifty terms.
So, \[S = 1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^3} + ....50{\left( {1 + \dfrac{1}{{50}}} \right)^{49}}\]
In this arithmetic geometric progression, the \[\left( {1 + \dfrac{1}{{50}}} \right)\] component is in geometric progression and constant term is arithmetic progression.
Hence, we multiply both sides of the equation by common ratio of the geometric progressive terms, \[\left( {1 + \dfrac{1}{{50}}} \right)\].
So, $S = 1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^3} + ....50{\left( {1 + \dfrac{1}{{50}}} \right)^{49}} - - - - - - - - (1)$
$ \Rightarrow \left( {1 + \dfrac{1}{{50}}} \right)S = \left( {1 + \dfrac{1}{{50}}} \right)\left[ {1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + 4{{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + ....50{{\left( {1 + \dfrac{1}{{50}}} \right)}^{49}}} \right]$
Opening the bracket and simplifying, we get,
$ \Rightarrow \left( {1 + \dfrac{1}{{50}}} \right)S = \left( {1 + \dfrac{1}{{50}}} \right) + 2{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 3{\left( {1 + \dfrac{1}{{50}}} \right)^3} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^4} + ....50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}$
Now, subtracting $(2)$ from $(1)$, we get,
\[ \Rightarrow S - \left( {1 + \dfrac{1}{{50}}} \right)S = \left[ {1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + 4{{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + ....50{{\left( {1 + \dfrac{1}{{50}}} \right)}^{49}}} \right] - \left[ {\left( {1 + \dfrac{1}{{50}}} \right) + 2{{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + 3{{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + 4{{\left( {1 + \dfrac{1}{{50}}} \right)}^4} + ....50{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}}} \right]\]\[ \Rightarrow S - S - \dfrac{S}{{50}} = \left[ {1 + \left( {1 + \dfrac{1}{{50}}} \right) + {{\left( {1 + \dfrac{1}{{50}}} \right)}^2} + {{\left( {1 + \dfrac{1}{{50}}} \right)}^3} + ....{{\left( {1 + \dfrac{1}{{50}}} \right)}^{49}}} \right] - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
The term contained in square brackets is a geometric progression. Hence, we can find the sum of n terms of a geometric progression by formula: $a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$
\[ \Rightarrow - \dfrac{S}{{50}} = 1\dfrac{{\left( {{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}} - 1} \right)}}{{\left( {\left( {1 + \dfrac{1}{{50}}} \right) - 1} \right)}} - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
Simplifying further, we get,
\[ \Rightarrow - \dfrac{S}{{50}} = \dfrac{{\left( {{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}} - 1} \right)}}{{\left( {1 + \dfrac{1}{{50}} - 1} \right)}} - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
\[ \Rightarrow - \dfrac{S}{{50}} = 50\left( {{{\left( {1 + \dfrac{1}{{50}}} \right)}^{50}} - 1} \right) - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
\[ \Rightarrow - \dfrac{S}{{50}} = 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}} - 50 - 50{\left( {1 + \dfrac{1}{{50}}} \right)^{50}}\]
Cancelling terms having same magnitude and opposite signs, we get,
\[ \Rightarrow - \dfrac{S}{{50}} = - 50\]
Cross multiplying the terms to find the value of S, we get,
\[ \Rightarrow S = 2500\]
Therefore, the sum of fifty terms of the series $1 + 2\left( {1 + \dfrac{1}{{50}}} \right) + 3{\left( {1 + \dfrac{1}{{50}}} \right)^2} + 4{\left( {1 + \dfrac{1}{{50}}} \right)^3} + ....$ is $2500$. Hence, option (B) is the correct answer.
Note:
The method involved in the problem given to us must be remembered as it is a standard method that can be applied in various questions involving arithmetic geometric progressions or any other type of special series or progression. We also must remember the formula for finding the sum of n terms of a geometric progression: $a\dfrac{{\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$ and the formula for finding the sum of an infinite geometric progression $\dfrac{a}{{1 - r}}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

