
The sum ${}^{20}{C_0} + {}^{20}{C_1} + {}^{20}{C_2} + .....{}^{20}{C_{10}}$ is equal to
A.${2^{20}} + \dfrac{{20!}}{{2{{\left( {10!} \right)}^2}}}$
B.${2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{{{\left( {10!} \right)}^2}}}$
C.${2^{19}} + {}^{20}{C_{10}}$
D.None of these
Answer
579.3k+ views
Hint: The given terms are coefficients of binomial expansion of (1+x)n , where n=20. Taking x=1 , we get the sum of the coefficient. Using the relation ${}^n{C_r} = {}^n{C_{n - r}}$ and further simplification, we get the required solution.
Complete step-by-step answer:
We know that binomial expansion of a + b to the power n is given by \[{\left( {a{\text{ }} + {\text{ }}b} \right)^n} = {\text{ }}\left( {^n{C_0}} \right){a^n}{b^0} + {\text{ }}\left( {^n{C_1}} \right){a^{n - 1}}b{\text{ }} + {\text{ }}\left( {^n{C_2}} \right){a^{n - 2}}{b^2} + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^n{C_{n - 1}}} \right)a{b^{n - 1}} + {\text{ }}\left( {^n{C_n}} \right){a^0}{b^n}\]
Using the above equation of binomial expansion, the expansion of ${\left( {1 + x} \right)^{20}}$, n=20,is given by,
\[{\left( {1 + x} \right)^{20}} = {\text{ }}\left( {^{20}{C_0}} \right){x^0} + {\text{ }}\left( {^{20}{C_1}} \right){x^1}{\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right){x^2} + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_{19}}} \right){x^{19}} + {\text{ }}\left( {^{20}{C_{20}}} \right){x^{20}}\]
Taking x= 1, the above binomial expansion becomes,
\[{\left( {1 + 1} \right)^{20}} = {\text{ }}\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_{19}}} \right) + {\text{ }}\left( {^{20}{C_{20}}} \right)\]
Now we have the sum of coefficients as the 20th power of 2.
We know that, ${}^n{C_r} = {}^n{C_{n - r}}$, using this in above equation, we get,
\[{\left( 2 \right)^{20}} = {\text{ 2}} \times \left[ {\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_9}} \right) + \left( {^{20}{C_{10}}} \right)} \right] - \left( {^{20}{C_{10}}} \right)\]
On adding both sides with \[\left( {^{20}{C_{10}}} \right)\], we get
\[{\left( 2 \right)^{20}} + \left( {^{20}{C_{10}}} \right) = {\text{ 2}} \times \left[ {\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_9}} \right) + \left( {^{20}{C_{10}}} \right)} \right]\]
Dividing both sides with 2 and reversing the equation, we get
\[\left[ {\left( {^{{\text{20}}}{{\text{C}}_{\text{0}}}} \right){\text{ + }}\left( {^{{\text{20}}}{{\text{C}}_{\text{1}}}} \right){\text{ + }}\left( {^{{\text{20}}}{{\text{C}}_{\text{2}}}} \right){\text{ }} \ldots {\text{ }}+{\text{ }}\left( {^{{\text{20}}}{{\text{C}}_{\text{9}}}} \right) + \left( {^{20}{C_{10}}} \right)} \right]{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}\left( {{{\left( {\text{2}} \right)}^{{\text{20}}}} + \left( {^{{\text{20}}}{{\text{C}}_{{\text{10}}}}} \right)} \right)\]
By opening the bracket and further simplification, we get,
${\text{ = }}{{\text{2}}^{{\text{19}}}} + \dfrac{{\text{1}}}{{\text{2}}}{\text{.}}\left( {^{{\text{20}}}{{\text{C}}_{{\text{10}}}}} \right)$
Therefore, the sum of given terms of binomial expansions is given by,
${\text{ = }}{{\text{2}}^{{\text{19}}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{.}}\dfrac{{{\text{20!}}}}{{{{\left( {{\text{10!}}} \right)}^{\text{2}}}}}$
This answer is not in any of the options. So, we can mark none of these.
So the correct answer is option D
Note: The coefficients of binomial expansion of power n is the nth row of the pascal's triangle. The solution can also be started from taking the binomial expansion of 1 + 1 to the power n (20 in this case). Concept of permutations and combinations are essential for binomial expansion, especially to find out the coefficients. But these concepts are not used in this particular problem. A common error while doing this problem is that the middle term in the expansion \[\left( {^{20}{C_{10}}} \right)\] is not included in the bracket after using the relation ${}^n{C_r} = {}^n{C_{n - r}}$. It must be included in the bracket by changing the equation appropriately.
Complete step-by-step answer:
We know that binomial expansion of a + b to the power n is given by \[{\left( {a{\text{ }} + {\text{ }}b} \right)^n} = {\text{ }}\left( {^n{C_0}} \right){a^n}{b^0} + {\text{ }}\left( {^n{C_1}} \right){a^{n - 1}}b{\text{ }} + {\text{ }}\left( {^n{C_2}} \right){a^{n - 2}}{b^2} + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^n{C_{n - 1}}} \right)a{b^{n - 1}} + {\text{ }}\left( {^n{C_n}} \right){a^0}{b^n}\]
Using the above equation of binomial expansion, the expansion of ${\left( {1 + x} \right)^{20}}$, n=20,is given by,
\[{\left( {1 + x} \right)^{20}} = {\text{ }}\left( {^{20}{C_0}} \right){x^0} + {\text{ }}\left( {^{20}{C_1}} \right){x^1}{\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right){x^2} + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_{19}}} \right){x^{19}} + {\text{ }}\left( {^{20}{C_{20}}} \right){x^{20}}\]
Taking x= 1, the above binomial expansion becomes,
\[{\left( {1 + 1} \right)^{20}} = {\text{ }}\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_{19}}} \right) + {\text{ }}\left( {^{20}{C_{20}}} \right)\]
Now we have the sum of coefficients as the 20th power of 2.
We know that, ${}^n{C_r} = {}^n{C_{n - r}}$, using this in above equation, we get,
\[{\left( 2 \right)^{20}} = {\text{ 2}} \times \left[ {\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_9}} \right) + \left( {^{20}{C_{10}}} \right)} \right] - \left( {^{20}{C_{10}}} \right)\]
On adding both sides with \[\left( {^{20}{C_{10}}} \right)\], we get
\[{\left( 2 \right)^{20}} + \left( {^{20}{C_{10}}} \right) = {\text{ 2}} \times \left[ {\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_9}} \right) + \left( {^{20}{C_{10}}} \right)} \right]\]
Dividing both sides with 2 and reversing the equation, we get
\[\left[ {\left( {^{{\text{20}}}{{\text{C}}_{\text{0}}}} \right){\text{ + }}\left( {^{{\text{20}}}{{\text{C}}_{\text{1}}}} \right){\text{ + }}\left( {^{{\text{20}}}{{\text{C}}_{\text{2}}}} \right){\text{ }} \ldots {\text{ }}+{\text{ }}\left( {^{{\text{20}}}{{\text{C}}_{\text{9}}}} \right) + \left( {^{20}{C_{10}}} \right)} \right]{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}\left( {{{\left( {\text{2}} \right)}^{{\text{20}}}} + \left( {^{{\text{20}}}{{\text{C}}_{{\text{10}}}}} \right)} \right)\]
By opening the bracket and further simplification, we get,
${\text{ = }}{{\text{2}}^{{\text{19}}}} + \dfrac{{\text{1}}}{{\text{2}}}{\text{.}}\left( {^{{\text{20}}}{{\text{C}}_{{\text{10}}}}} \right)$
Therefore, the sum of given terms of binomial expansions is given by,
${\text{ = }}{{\text{2}}^{{\text{19}}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{.}}\dfrac{{{\text{20!}}}}{{{{\left( {{\text{10!}}} \right)}^{\text{2}}}}}$
This answer is not in any of the options. So, we can mark none of these.
So the correct answer is option D
Note: The coefficients of binomial expansion of power n is the nth row of the pascal's triangle. The solution can also be started from taking the binomial expansion of 1 + 1 to the power n (20 in this case). Concept of permutations and combinations are essential for binomial expansion, especially to find out the coefficients. But these concepts are not used in this particular problem. A common error while doing this problem is that the middle term in the expansion \[\left( {^{20}{C_{10}}} \right)\] is not included in the bracket after using the relation ${}^n{C_r} = {}^n{C_{n - r}}$. It must be included in the bracket by changing the equation appropriately.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

