
The standard deviation $\sigma $ of the first N natural numbers can be obtained using which of the following,
A. $\sigma = \dfrac{{{N^2} - 1}}{{12}}$
B. $\sigma = \sqrt {\dfrac{{{N^2} - 1}}{{12}}} $
C. $\sigma = \sqrt {\dfrac{{N - 1}}{{12}}} $
D. $\sigma = \sqrt {\dfrac{{{N^2} - 1}}{{6N}}} $
Answer
543.9k+ views
Hint: Use the definition of standard deviation as the square root of the variance and $\operatorname{var} \left( X \right) = E\left( {{{\left( {X - \mu } \right)}^2}} \right)$ where $\mu = E\left( X \right)$. Use linearity of expression to prove that $\operatorname{var} \left( X \right) = E\left( {{X^2}} \right) - {\left[ {E\left( X \right)} \right]^2}$.
Using formula form the sum of squares of first n natural numbers and the sum of first n natural number to find the individual terms in the expression for var(X), $\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$ and $\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$.
Complete step by step solution:
We know that
$\operatorname{var} \left( X \right) = E\left( {{{\left( {X - \mu } \right)}^2}} \right)$
Using the formula, ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we get,
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2} + {\mu ^2} - 2X\mu } \right)$
Now we know that
$E\left( {X + Y} \right) = E\left( X \right) + E\left( Y \right)$
Using the above formula, we get
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) + E\left( {{\mu ^2}} \right) + E\left( { - 2X\mu } \right)$
We know that $E\left( {aX} \right) = aE\left( X \right)$ and $E\left( a \right) = a$, we get
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) + {\mu ^2} - 2\mu E\left( X \right)$
Substitute $\mu = E\left( X \right)$ in the above equation,
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) + {\left( {E\left( X \right)} \right)^2} - 2E\left( X \right)E\left( X \right)$
Simplify the terms,
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) - {\left[ {E\left( X \right)} \right]^2}$ ….. (1)
We know that,
$E\left( {f\left( X \right)} \right) = \sum\limits_{r \in S} {P\left( {X = r} \right)f\left( r \right)} $
Substitute $X$ in place of \[f\left( X \right)\],
$ \Rightarrow E\left( X \right) = \sum\limits_{r = 1}^n {P\left( {X = r} \right)r} $
Simplify the term,
$ \Rightarrow E\left( X \right) = \sum\limits_{r = 1}^n {\dfrac{1}{n} \times r} $
Take constant part out of the summation,
$ \Rightarrow E\left( X \right) = \dfrac{1}{n}\sum\limits_{r = 1}^n r $
Use $\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$, we get
$ \Rightarrow E\left( X \right) = \dfrac{1}{n} \times \dfrac{{n\left( {n + 1} \right)}}{2}$
Cancel out the common factors,
$ \Rightarrow E\left( X \right) = \dfrac{{\left( {n + 1} \right)}}{2}$ ….. (2)
Now, substitute ${X^2}$ in place of \[f\left( X \right)\],
$ \Rightarrow E\left( {{X^2}} \right) = \sum\limits_{r = 1}^n {P\left( {X = r} \right){r^2}} $
Simplify the term,
$ \Rightarrow E\left( {{X^2}} \right) = \sum\limits_{r = 1}^n {\dfrac{1}{n} \times {r^2}} $
Take constant part out of the summation,
$ \Rightarrow E\left( {{X^2}} \right) = \dfrac{1}{n}\sum\limits_{r = 1}^n {{r^2}} $
Use $\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$, we get
$ \Rightarrow E\left( {{X^2}} \right) = \dfrac{1}{n} \times \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Cancel out the common factors,
$ \Rightarrow E\left( {{X^2}} \right) = \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$ ….. (3)
Substitute the values from equation (2) and (3) in equation (1),
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - {\left( {\dfrac{{n + 1}}{2}} \right)^2}$
Simplify the terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{{{\left( {n + 1} \right)}^2}}}{4}$
Take LCM of the terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{2\left( {n + 1} \right)\left( {2n + 1} \right) - 3{{\left( {n + 1} \right)}^2}}}{{12}}$
Take $\dfrac{{n + 1}}{{12}}$ common from both terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)}}{{12}}\left[ {2\left( {2n + 1} \right) - 3\left( {n + 1} \right)} \right]$
Simplify the terms in the bracket,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)}}{{12}}\left[ {4n + 2 - 3n - 3} \right]$
Subtract the like terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{12}}$
Using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$, we get
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{{n^2} - 1}}{{12}}$
We know that,
$\sigma \left( X \right) = \sqrt {\operatorname{var} \left( X \right)} $
Substitute the value,
$\therefore \sigma \left( X \right) = \sqrt {\dfrac{{{n^2} - 1}}{{12}}} $
Now we are given natural numbers as N so we will replace n with N.
So, the correct answer is “Option B”.
Note: Standard deviation measures the distribution of a dataset relative to its mean and is calculated as the square root of the variance and variance is the average of the squared differences of the values from the mean.
Using formula form the sum of squares of first n natural numbers and the sum of first n natural number to find the individual terms in the expression for var(X), $\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$ and $\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$.
Complete step by step solution:
We know that
$\operatorname{var} \left( X \right) = E\left( {{{\left( {X - \mu } \right)}^2}} \right)$
Using the formula, ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we get,
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2} + {\mu ^2} - 2X\mu } \right)$
Now we know that
$E\left( {X + Y} \right) = E\left( X \right) + E\left( Y \right)$
Using the above formula, we get
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) + E\left( {{\mu ^2}} \right) + E\left( { - 2X\mu } \right)$
We know that $E\left( {aX} \right) = aE\left( X \right)$ and $E\left( a \right) = a$, we get
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) + {\mu ^2} - 2\mu E\left( X \right)$
Substitute $\mu = E\left( X \right)$ in the above equation,
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) + {\left( {E\left( X \right)} \right)^2} - 2E\left( X \right)E\left( X \right)$
Simplify the terms,
$ \Rightarrow \operatorname{var} \left( X \right) = E\left( {{X^2}} \right) - {\left[ {E\left( X \right)} \right]^2}$ ….. (1)
We know that,
$E\left( {f\left( X \right)} \right) = \sum\limits_{r \in S} {P\left( {X = r} \right)f\left( r \right)} $
Substitute $X$ in place of \[f\left( X \right)\],
$ \Rightarrow E\left( X \right) = \sum\limits_{r = 1}^n {P\left( {X = r} \right)r} $
Simplify the term,
$ \Rightarrow E\left( X \right) = \sum\limits_{r = 1}^n {\dfrac{1}{n} \times r} $
Take constant part out of the summation,
$ \Rightarrow E\left( X \right) = \dfrac{1}{n}\sum\limits_{r = 1}^n r $
Use $\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$, we get
$ \Rightarrow E\left( X \right) = \dfrac{1}{n} \times \dfrac{{n\left( {n + 1} \right)}}{2}$
Cancel out the common factors,
$ \Rightarrow E\left( X \right) = \dfrac{{\left( {n + 1} \right)}}{2}$ ….. (2)
Now, substitute ${X^2}$ in place of \[f\left( X \right)\],
$ \Rightarrow E\left( {{X^2}} \right) = \sum\limits_{r = 1}^n {P\left( {X = r} \right){r^2}} $
Simplify the term,
$ \Rightarrow E\left( {{X^2}} \right) = \sum\limits_{r = 1}^n {\dfrac{1}{n} \times {r^2}} $
Take constant part out of the summation,
$ \Rightarrow E\left( {{X^2}} \right) = \dfrac{1}{n}\sum\limits_{r = 1}^n {{r^2}} $
Use $\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$, we get
$ \Rightarrow E\left( {{X^2}} \right) = \dfrac{1}{n} \times \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Cancel out the common factors,
$ \Rightarrow E\left( {{X^2}} \right) = \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$ ….. (3)
Substitute the values from equation (2) and (3) in equation (1),
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - {\left( {\dfrac{{n + 1}}{2}} \right)^2}$
Simplify the terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{{{\left( {n + 1} \right)}^2}}}{4}$
Take LCM of the terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{2\left( {n + 1} \right)\left( {2n + 1} \right) - 3{{\left( {n + 1} \right)}^2}}}{{12}}$
Take $\dfrac{{n + 1}}{{12}}$ common from both terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)}}{{12}}\left[ {2\left( {2n + 1} \right) - 3\left( {n + 1} \right)} \right]$
Simplify the terms in the bracket,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)}}{{12}}\left[ {4n + 2 - 3n - 3} \right]$
Subtract the like terms,
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{\left( {n + 1} \right)\left( {n - 1} \right)}}{{12}}$
Using $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$, we get
$ \Rightarrow \operatorname{var} \left( X \right) = \dfrac{{{n^2} - 1}}{{12}}$
We know that,
$\sigma \left( X \right) = \sqrt {\operatorname{var} \left( X \right)} $
Substitute the value,
$\therefore \sigma \left( X \right) = \sqrt {\dfrac{{{n^2} - 1}}{{12}}} $
Now we are given natural numbers as N so we will replace n with N.
So, the correct answer is “Option B”.
Note: Standard deviation measures the distribution of a dataset relative to its mean and is calculated as the square root of the variance and variance is the average of the squared differences of the values from the mean.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

