
The standard deviation of 10, 16, 10, 16, 10, 10, 16, 16 is?
A) 4
B) 6
C) 3
D) 0
Answer
579.9k+ views
Hint: Here we have been asked to find the standard deviation of an ungrouped data. The standard deviation is a summary measure of the differences of each observation from the mean.
\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\]
Here ,
\[\begin{align}
& \sigma =\text{Standard Deviation} \\
& \overline{x}=\text{mean} \\
& \text{n = number of data values} \\
& \text{x = the data values} \\
& \sum{x}=\text{ Summation of all the data values} \\
& \sum{{{\left( x-\overline{x} \right)}^{2}}=\text{ Subtract the mean from each data value,square and finally add up the resulting values}} \\
\end{align}\]
An alternative, yet equivalent formula, which is often easier to use is
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
Complete step by step answer:
Firstly, to find the value of Standard Deviation let us find the mean of the given data
The data values given to us are 10, 16, 10, 16, 10, 10, 16, 16
Number of data values= n= 8
It would also be easy if solved using a tabular form
\[\begin{align}
& Mean=\dfrac{\sum{x}}{n}=\dfrac{10+16+10+16+10+10+16+16}{8}=\dfrac{104}{8}=13 \\
& \overline{x}=13 \\
\end{align}\]
Now let us find the value of summation of squares of the given data values
\[\begin{align}
& \sum{{{\left( x \right)}^{2}}={{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 16 \right)}^{2}}} \\
&\Rightarrow \sum{{{\left( x \right)}^{2}}=4\left( 100+256 \right)=1424} \\
\end{align}\]
Substituting the values in the given formula
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
\[\begin{align}
&\Rightarrow \sum{{{x}^{2}}=1424} \\
&\Rightarrow n=8 \\
&\Rightarrow \overline{x}=13 \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-{{\left( 13 \right)}^{2}} \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-169 \\
&\Rightarrow {{\sigma }^{2}}=178-169=9 \\
&\Rightarrow {{\sigma }^{2}}=9 \\
&\Rightarrow \sigma =\sqrt{9}=3 \\
&\Rightarrow \sigma =3 \\
\end{align}\]
Note: This problem can also be solved using the formula\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\], but here first we have to find the deviation of all the data values from the mean and then add their squares. It would be easier if we write down all the values and calculate using a tabular form
Substituting the values in the formula
\[\sigma =\sqrt{\dfrac{72}{8}}=\sqrt{9}=3\]
\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\]
Here ,
\[\begin{align}
& \sigma =\text{Standard Deviation} \\
& \overline{x}=\text{mean} \\
& \text{n = number of data values} \\
& \text{x = the data values} \\
& \sum{x}=\text{ Summation of all the data values} \\
& \sum{{{\left( x-\overline{x} \right)}^{2}}=\text{ Subtract the mean from each data value,square and finally add up the resulting values}} \\
\end{align}\]
An alternative, yet equivalent formula, which is often easier to use is
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
Complete step by step answer:
Firstly, to find the value of Standard Deviation let us find the mean of the given data
The data values given to us are 10, 16, 10, 16, 10, 10, 16, 16
Number of data values= n= 8
It would also be easy if solved using a tabular form
| Data values (x) | \[{{x}^{2}}\] |
| 10 | 100 |
| 16 | 256 |
| 10 | 100 |
| 16 | 256 |
| 10 | 100 |
| 10 | 100 |
| 16 | 256 |
| 16 | 256 |
| ∑x=10+16+10+16+10+10+16+16=104 | \[\sum{{{x}^{2}}}\] =1424 |
\[\begin{align}
& Mean=\dfrac{\sum{x}}{n}=\dfrac{10+16+10+16+10+10+16+16}{8}=\dfrac{104}{8}=13 \\
& \overline{x}=13 \\
\end{align}\]
Now let us find the value of summation of squares of the given data values
\[\begin{align}
& \sum{{{\left( x \right)}^{2}}={{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 16 \right)}^{2}}} \\
&\Rightarrow \sum{{{\left( x \right)}^{2}}=4\left( 100+256 \right)=1424} \\
\end{align}\]
Substituting the values in the given formula
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
\[\begin{align}
&\Rightarrow \sum{{{x}^{2}}=1424} \\
&\Rightarrow n=8 \\
&\Rightarrow \overline{x}=13 \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-{{\left( 13 \right)}^{2}} \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-169 \\
&\Rightarrow {{\sigma }^{2}}=178-169=9 \\
&\Rightarrow {{\sigma }^{2}}=9 \\
&\Rightarrow \sigma =\sqrt{9}=3 \\
&\Rightarrow \sigma =3 \\
\end{align}\]
Note: This problem can also be solved using the formula\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\], but here first we have to find the deviation of all the data values from the mean and then add their squares. It would be easier if we write down all the values and calculate using a tabular form
| Data values (x) | \[x-\overline{x}\] | \[{{\left( x-\overline{x} \right)}^{2}}\] |
| 10 | \[10-13=-3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| 10 | \[10-13=-3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| 10 | \[10-13=-3\] | 9 |
| 10 | \[10-13=-3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| \[\sum{{{\left( x-\overline{x} \right)}^{2}}=9\times 72}\] |
Substituting the values in the formula
\[\sigma =\sqrt{\dfrac{72}{8}}=\sqrt{9}=3\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

