
The standard deviation of 10, 16, 10, 16, 10, 10, 16, 16 is?
A) 4
B) 6
C) 3
D) 0
Answer
565.8k+ views
Hint: Here we have been asked to find the standard deviation of an ungrouped data. The standard deviation is a summary measure of the differences of each observation from the mean.
\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\]
Here ,
\[\begin{align}
& \sigma =\text{Standard Deviation} \\
& \overline{x}=\text{mean} \\
& \text{n = number of data values} \\
& \text{x = the data values} \\
& \sum{x}=\text{ Summation of all the data values} \\
& \sum{{{\left( x-\overline{x} \right)}^{2}}=\text{ Subtract the mean from each data value,square and finally add up the resulting values}} \\
\end{align}\]
An alternative, yet equivalent formula, which is often easier to use is
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
Complete step by step answer:
Firstly, to find the value of Standard Deviation let us find the mean of the given data
The data values given to us are 10, 16, 10, 16, 10, 10, 16, 16
Number of data values= n= 8
It would also be easy if solved using a tabular form
\[\begin{align}
& Mean=\dfrac{\sum{x}}{n}=\dfrac{10+16+10+16+10+10+16+16}{8}=\dfrac{104}{8}=13 \\
& \overline{x}=13 \\
\end{align}\]
Now let us find the value of summation of squares of the given data values
\[\begin{align}
& \sum{{{\left( x \right)}^{2}}={{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 16 \right)}^{2}}} \\
&\Rightarrow \sum{{{\left( x \right)}^{2}}=4\left( 100+256 \right)=1424} \\
\end{align}\]
Substituting the values in the given formula
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
\[\begin{align}
&\Rightarrow \sum{{{x}^{2}}=1424} \\
&\Rightarrow n=8 \\
&\Rightarrow \overline{x}=13 \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-{{\left( 13 \right)}^{2}} \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-169 \\
&\Rightarrow {{\sigma }^{2}}=178-169=9 \\
&\Rightarrow {{\sigma }^{2}}=9 \\
&\Rightarrow \sigma =\sqrt{9}=3 \\
&\Rightarrow \sigma =3 \\
\end{align}\]
Note: This problem can also be solved using the formula\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\], but here first we have to find the deviation of all the data values from the mean and then add their squares. It would be easier if we write down all the values and calculate using a tabular form
Substituting the values in the formula
\[\sigma =\sqrt{\dfrac{72}{8}}=\sqrt{9}=3\]
\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\]
Here ,
\[\begin{align}
& \sigma =\text{Standard Deviation} \\
& \overline{x}=\text{mean} \\
& \text{n = number of data values} \\
& \text{x = the data values} \\
& \sum{x}=\text{ Summation of all the data values} \\
& \sum{{{\left( x-\overline{x} \right)}^{2}}=\text{ Subtract the mean from each data value,square and finally add up the resulting values}} \\
\end{align}\]
An alternative, yet equivalent formula, which is often easier to use is
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
Complete step by step answer:
Firstly, to find the value of Standard Deviation let us find the mean of the given data
The data values given to us are 10, 16, 10, 16, 10, 10, 16, 16
Number of data values= n= 8
It would also be easy if solved using a tabular form
| Data values (x) | \[{{x}^{2}}\] |
| 10 | 100 |
| 16 | 256 |
| 10 | 100 |
| 16 | 256 |
| 10 | 100 |
| 10 | 100 |
| 16 | 256 |
| 16 | 256 |
| ∑x=10+16+10+16+10+10+16+16=104 | \[\sum{{{x}^{2}}}\] =1424 |
\[\begin{align}
& Mean=\dfrac{\sum{x}}{n}=\dfrac{10+16+10+16+10+10+16+16}{8}=\dfrac{104}{8}=13 \\
& \overline{x}=13 \\
\end{align}\]
Now let us find the value of summation of squares of the given data values
\[\begin{align}
& \sum{{{\left( x \right)}^{2}}={{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 10 \right)}^{2}}+{{\left( 16 \right)}^{2}}+{{\left( 16 \right)}^{2}}} \\
&\Rightarrow \sum{{{\left( x \right)}^{2}}=4\left( 100+256 \right)=1424} \\
\end{align}\]
Substituting the values in the given formula
\[{{\sigma }^{2}}=\dfrac{\sum{{{x}^{2}}}}{n}-{{\left( \overline{x} \right)}^{2}}\]
\[\begin{align}
&\Rightarrow \sum{{{x}^{2}}=1424} \\
&\Rightarrow n=8 \\
&\Rightarrow \overline{x}=13 \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-{{\left( 13 \right)}^{2}} \\
&\Rightarrow {{\sigma }^{2}}=\dfrac{1424}{8}-169 \\
&\Rightarrow {{\sigma }^{2}}=178-169=9 \\
&\Rightarrow {{\sigma }^{2}}=9 \\
&\Rightarrow \sigma =\sqrt{9}=3 \\
&\Rightarrow \sigma =3 \\
\end{align}\]
Note: This problem can also be solved using the formula\[\begin{align}
& \sigma =\sqrt{\dfrac{\sum{{{\left( x-\overline{x} \right)}^{2}}}}{n}} \\
& \\
\end{align}\], but here first we have to find the deviation of all the data values from the mean and then add their squares. It would be easier if we write down all the values and calculate using a tabular form
| Data values (x) | \[x-\overline{x}\] | \[{{\left( x-\overline{x} \right)}^{2}}\] |
| 10 | \[10-13=-3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| 10 | \[10-13=-3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| 10 | \[10-13=-3\] | 9 |
| 10 | \[10-13=-3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| 16 | \[16-13=3\] | 9 |
| \[\sum{{{\left( x-\overline{x} \right)}^{2}}=9\times 72}\] |
Substituting the values in the formula
\[\sigma =\sqrt{\dfrac{72}{8}}=\sqrt{9}=3\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

