
The square root of $4ab - 2i\left( {{a^2} - {b^2}} \right)$:
1) $ \pm \left[ {\left( {a + b} \right) - i\left( {a - b} \right)} \right]$
2) $ \pm \left[ {\left( {a + b} \right) + i\left( {a - b} \right)} \right]$
3) $ \pm \left[ {\left( {ab} \right) + i\left( {a + b} \right)} \right]$
4) $ \pm \left[ {\left( {ab} \right) - i\left( {a + b} \right)} \right]$
Answer
580.5k+ views
Hint: We first let the root of the given number as $x + iy$. Then compare the real and imaginary part using the square of number $x + iy$ as $4ab - 2i\left( {{a^2} - {b^2}} \right)$. Find the value of ${x^2} + {y^2}$ using the formula ${\left( {{x^2} + {y^2}} \right)^2} = {\left( {{x^2} - {y^2}} \right)^2} + {\left( {2xy} \right)^2}$ and then solving the equations using elimination to find the value of $x$ and $y$. We get the final answer by substituting the values in $x + iy$.
Complete step by step answer:
Since the given number is a complex number, therefore the square root of this number will also be a complex number.
So, let the square root of the given number $4ab - 2i\left( {{a^2} - {b^2}} \right)$ as $x + iy$ . Thus we can write
${\left( {x + iy} \right)^2} = 4ab - 2i\left( {{a^2} - {b^2}} \right)$
On simplifying the above equation we get,
${x^2} - {y^2} - 2ixy = 4ab - 2i\left( {{a^2} - {b^2}} \right){\text{ }}\left( {\text{1}} \right)$
The part of the complex number without the $i$ as coefficient is called the real part of the complex number, and the part of the complex number with $i$ as its coefficient is called the imaginary part of the complex number.
On comparing the real and imaginary part of the equation $\left( 1 \right)$, we get
$
{x^2} - {y^2} = 4ab \\
- 2ixy = - 2i\left( {{a^2} - {b^2}} \right){\text{ }} \\
$
On simplifying the equation we get
$
{x^2} - {y^2} = 4ab{\text{ }}\left( {\text{2}} \right) \\
xy = {a^2} - {b^2}{\text{ }}\left( {\text{3}} \right) \\
$
Find the value of ${x^2} + {y^2}$using the formula ${\left( {{m^2} + {n^2}} \right)^2} = {\left( {{m^2} - {n^2}} \right)^2} + 4{m^2}{n^2}$
${\left( {{x^2} + {y^2}} \right)^2} = {\left( {{x^2} - {y^2}} \right)^2} + {\left( {2xy} \right)^2}$
Substituting the values from equation $\left( 2 \right){\text{ and }}\left( 3 \right)$ we get
$
{\left( {{x^2} + {y^2}} \right)^2} = {\left( {4ab} \right)^2} + {\left( {2\left( {{a^2} - {b^2}} \right)} \right)^2} \\
= 16{a^2}{b^2} + 4{\left( {{a^2} - {b^2}} \right)^2} \\
= 16{a^2}{b^2} + 4\left( {{a^4} + {b^4} - 2{a^2}{b^2}} \right) \\
= 8{a^2}{b^2} + 4{a^4} + 4{b^4} \\
= {\left( {2{a^2} + 2{b^2}} \right)^2} \\
{x^2} + {y^2} = 2{a^2} + 2{b^2}{\text{ }}\left( {\text{4}} \right) \\
$
Adding equation $2$ and $4$we get
$
{x^2} - {y^2} + {x^2} + {y^2} = 2{a^2} + 2{b^2} + 4ab{\text{ }} \\
{\text{2}}{x^2} = 2{\left( {a + b} \right)^2} \\
x = \pm \left( {a + b} \right) \\
$
Substituting the $a + b$for $x$in the equation $1$.
$
{\left( {a + b} \right)^2} - {y^2} = 4ab \\
- {y^2} = 4ab - {a^2} - {b^2} - 2ab \\
- {y^2} = - \left( {{a^2} + {b^2} - 2ab} \right) \\
{y^2} = {\left( {a - b} \right)^2} \\
y = \pm \left( {a - b} \right) \\
$
Substituting the values of $x,y$ in the required complex number
$x + iy = \pm \left[ {a + b + i\left( {a - b} \right)} \right]$
Hence, option B is the correct answer.
Note: While calculating, students must remember the value of ${i^2}$ is $ - 1$. Substitute ${i^2} = - 1$ while solving ${\left( {x + iy} \right)^2}$. Calculation needs to be done carefully for these types of questions.
Complete step by step answer:
Since the given number is a complex number, therefore the square root of this number will also be a complex number.
So, let the square root of the given number $4ab - 2i\left( {{a^2} - {b^2}} \right)$ as $x + iy$ . Thus we can write
${\left( {x + iy} \right)^2} = 4ab - 2i\left( {{a^2} - {b^2}} \right)$
On simplifying the above equation we get,
${x^2} - {y^2} - 2ixy = 4ab - 2i\left( {{a^2} - {b^2}} \right){\text{ }}\left( {\text{1}} \right)$
The part of the complex number without the $i$ as coefficient is called the real part of the complex number, and the part of the complex number with $i$ as its coefficient is called the imaginary part of the complex number.
On comparing the real and imaginary part of the equation $\left( 1 \right)$, we get
$
{x^2} - {y^2} = 4ab \\
- 2ixy = - 2i\left( {{a^2} - {b^2}} \right){\text{ }} \\
$
On simplifying the equation we get
$
{x^2} - {y^2} = 4ab{\text{ }}\left( {\text{2}} \right) \\
xy = {a^2} - {b^2}{\text{ }}\left( {\text{3}} \right) \\
$
Find the value of ${x^2} + {y^2}$using the formula ${\left( {{m^2} + {n^2}} \right)^2} = {\left( {{m^2} - {n^2}} \right)^2} + 4{m^2}{n^2}$
${\left( {{x^2} + {y^2}} \right)^2} = {\left( {{x^2} - {y^2}} \right)^2} + {\left( {2xy} \right)^2}$
Substituting the values from equation $\left( 2 \right){\text{ and }}\left( 3 \right)$ we get
$
{\left( {{x^2} + {y^2}} \right)^2} = {\left( {4ab} \right)^2} + {\left( {2\left( {{a^2} - {b^2}} \right)} \right)^2} \\
= 16{a^2}{b^2} + 4{\left( {{a^2} - {b^2}} \right)^2} \\
= 16{a^2}{b^2} + 4\left( {{a^4} + {b^4} - 2{a^2}{b^2}} \right) \\
= 8{a^2}{b^2} + 4{a^4} + 4{b^4} \\
= {\left( {2{a^2} + 2{b^2}} \right)^2} \\
{x^2} + {y^2} = 2{a^2} + 2{b^2}{\text{ }}\left( {\text{4}} \right) \\
$
Adding equation $2$ and $4$we get
$
{x^2} - {y^2} + {x^2} + {y^2} = 2{a^2} + 2{b^2} + 4ab{\text{ }} \\
{\text{2}}{x^2} = 2{\left( {a + b} \right)^2} \\
x = \pm \left( {a + b} \right) \\
$
Substituting the $a + b$for $x$in the equation $1$.
$
{\left( {a + b} \right)^2} - {y^2} = 4ab \\
- {y^2} = 4ab - {a^2} - {b^2} - 2ab \\
- {y^2} = - \left( {{a^2} + {b^2} - 2ab} \right) \\
{y^2} = {\left( {a - b} \right)^2} \\
y = \pm \left( {a - b} \right) \\
$
Substituting the values of $x,y$ in the required complex number
$x + iy = \pm \left[ {a + b + i\left( {a - b} \right)} \right]$
Hence, option B is the correct answer.
Note: While calculating, students must remember the value of ${i^2}$ is $ - 1$. Substitute ${i^2} = - 1$ while solving ${\left( {x + iy} \right)^2}$. Calculation needs to be done carefully for these types of questions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

