
The square root of $1-i$ is $\sqrt{\dfrac{\sqrt{2}+1}{2}}-i\sqrt{\dfrac{\sqrt{2}-1}{2}}$. If this is true enter 1, else enter 0.
Answer
524.4k+ views
Hint: To obtain whether the statement is true or not we will find the square root of the complex number. Firstly we will assume that the square root of the given number is $a-ib$ then we will solve the obtained equation to get the value of $a,b$ and hence we will get our square root. Finally compare whether the obtained square root is equal to the given square root and get the desired answer.
Complete step-by-step solution:
We have to find the square root of:
$1-i$
Let the square root of above value is $a+ib$ so we get the below equation:
$\sqrt{1-i}=\pm \left( a-ib \right)$…..$\left( 1 \right)$
Now we will solve the above equation to get the value of $a,b$
Firstly take square of both side values as follows:
$\begin{align}
& {{\left( \sqrt{1-i} \right)}^{2}}={{\left( a-ib \right)}^{2}} \\
& \Rightarrow {{\left( 1-i \right)}^{\dfrac{1}{2}\times 2}}={{a}^{2}}-2\times a\times ib+{{\left( -ib \right)}^{2}} \\
& \Rightarrow 1-i={{a}^{2}}-2iab+{{i}^{2}}{{b}^{2}} \\
& \therefore 1-i={{a}^{2}}-{{b}^{2}}-2iab \\
\end{align}$
Now we will compare the real and imaginary parts as follows:
${{a}^{2}}-{{b}^{2}}=1$…..$\left( 2 \right)$
$2ab=1$…..$\left( 3 \right)$
Next we will find the value of ${{a}^{2}}+{{b}^{2}}$ by using equation (2) and (3) as follows:
${{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}+4{{a}^{2}}{{b}^{2}}$
$\begin{align}
& {{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}+{{\left( 2ab \right)}^{2}} \\
& \Rightarrow {{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{\left( 1 \right)}^{2}}+{{\left( 1 \right)}^{2}} \\
\end{align}$
$\therefore \left( {{a}^{2}}+{{b}^{2}} \right)=\sqrt{2}$….$\left( 4 \right)$
On adding equation (2) and (4) we get,
$\begin{align}
& 2{{a}^{2}}=1+\sqrt{2} \\
& \Rightarrow {{a}^{2}}=\dfrac{1+\sqrt{2}}{2} \\
& \therefore a=\pm \sqrt{\dfrac{1+\sqrt{2}}{2}} \\
\end{align}$
On subtracting equation (2) from (4) we get,
$\begin{align}
& 2{{b}^{2}}= {\sqrt{2}-1} \\
& \Rightarrow {{b}^{2}}=\dfrac{\sqrt{2}-1}{2} \\
& \therefore b=\pm \sqrt{\dfrac{\sqrt{2}-1}{2}} \\
\end{align}$
So we will take the value as:
$\begin{align}
& a=\sqrt{\dfrac{\sqrt{2}+1}{2}} \\
& b=\sqrt{\dfrac{\sqrt{2}-1}{2}} \\
\end{align}$
Put above value in equation (1) we get,
$\sqrt{1-i}=\sqrt{\dfrac{\sqrt{2}+1}{2}}-i\sqrt{\dfrac{\sqrt{2}-1}{2}}$
Hence the given statement is true enter 1.
Note: Complex numbers are those that can be expressed in the form of $a+ib$ where $a$ is the real part and $b$ is the imaginary part. Also ${{i}^{2}}=-1$ as $i=\sqrt{-1}$. To find the value of the square root of any complex number we always let it in the form of $a+ib$ the sign in between can be changed depending on the value and then find out the value of $a,b$.
Complete step-by-step solution:
We have to find the square root of:
$1-i$
Let the square root of above value is $a+ib$ so we get the below equation:
$\sqrt{1-i}=\pm \left( a-ib \right)$…..$\left( 1 \right)$
Now we will solve the above equation to get the value of $a,b$
Firstly take square of both side values as follows:
$\begin{align}
& {{\left( \sqrt{1-i} \right)}^{2}}={{\left( a-ib \right)}^{2}} \\
& \Rightarrow {{\left( 1-i \right)}^{\dfrac{1}{2}\times 2}}={{a}^{2}}-2\times a\times ib+{{\left( -ib \right)}^{2}} \\
& \Rightarrow 1-i={{a}^{2}}-2iab+{{i}^{2}}{{b}^{2}} \\
& \therefore 1-i={{a}^{2}}-{{b}^{2}}-2iab \\
\end{align}$
Now we will compare the real and imaginary parts as follows:
${{a}^{2}}-{{b}^{2}}=1$…..$\left( 2 \right)$
$2ab=1$…..$\left( 3 \right)$
Next we will find the value of ${{a}^{2}}+{{b}^{2}}$ by using equation (2) and (3) as follows:
${{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}+4{{a}^{2}}{{b}^{2}}$
$\begin{align}
& {{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}+{{\left( 2ab \right)}^{2}} \\
& \Rightarrow {{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{\left( 1 \right)}^{2}}+{{\left( 1 \right)}^{2}} \\
\end{align}$
$\therefore \left( {{a}^{2}}+{{b}^{2}} \right)=\sqrt{2}$….$\left( 4 \right)$
On adding equation (2) and (4) we get,
$\begin{align}
& 2{{a}^{2}}=1+\sqrt{2} \\
& \Rightarrow {{a}^{2}}=\dfrac{1+\sqrt{2}}{2} \\
& \therefore a=\pm \sqrt{\dfrac{1+\sqrt{2}}{2}} \\
\end{align}$
On subtracting equation (2) from (4) we get,
$\begin{align}
& 2{{b}^{2}}= {\sqrt{2}-1} \\
& \Rightarrow {{b}^{2}}=\dfrac{\sqrt{2}-1}{2} \\
& \therefore b=\pm \sqrt{\dfrac{\sqrt{2}-1}{2}} \\
\end{align}$
So we will take the value as:
$\begin{align}
& a=\sqrt{\dfrac{\sqrt{2}+1}{2}} \\
& b=\sqrt{\dfrac{\sqrt{2}-1}{2}} \\
\end{align}$
Put above value in equation (1) we get,
$\sqrt{1-i}=\sqrt{\dfrac{\sqrt{2}+1}{2}}-i\sqrt{\dfrac{\sqrt{2}-1}{2}}$
Hence the given statement is true enter 1.
Note: Complex numbers are those that can be expressed in the form of $a+ib$ where $a$ is the real part and $b$ is the imaginary part. Also ${{i}^{2}}=-1$ as $i=\sqrt{-1}$. To find the value of the square root of any complex number we always let it in the form of $a+ib$ the sign in between can be changed depending on the value and then find out the value of $a,b$.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


