Answer
Verified
456.9k+ views
Hint: Nearest Integer functions are the functions that come after rounding it off to the nearest integer.
Solving a quadratic equation: \[a{x^2} + bx + c = 0\]by using middle term splitting or using discriminant method.
Complete step-by-step answer:
Let, \[x = y\], where y is an integer.
The given equation can be written as:
\[ \Rightarrow {y^2} + {(y + 1)^2} = 25\]
On simplifying above equation we get,
\[ \Rightarrow {y^2} + {y^2} + 1 + 2y = 25\]
\[ \Rightarrow 2{y^2} + 2y = 25 - 1\]
\[ \Rightarrow 2{y^2} + 2y - 24 = 0\]
\[ \Rightarrow {y^2} + y - 12 = 0\]
\[ \Rightarrow {y^2} + 4y - 3y - 12 = 0\]
\[ \Rightarrow y(y + 4) - 3(y + 4) = 0\]
Taking \[(y + 4)\] common we get,
\[ \Rightarrow (y + 4)(y - 3) = 0\]
\[ \Rightarrow y = - 4;y = 3\]
\[ \Rightarrow x = - 4;x = 3\]
If \[x = y + s\]; where y is an integer and \[0 < s < 1\].
The equation can be written as:
\[ \Rightarrow {(y + 1)^2} + {(y + 2)^2} = 25\]
On simplifying above equation, we get:
\[ \Rightarrow {y^2} + 1 + 2y + {y^2} + 4 + 4y = 25\]
\[ \Rightarrow 2{y^2} + 6y = 25 - 5\]
\[ \Rightarrow 2{y^2} + 6y = 20\]
\[ \Rightarrow 2{y^2} + 6y - 2 = 0\]
\[ \Rightarrow {y^2} + 3k - 10 = 0\]
\[ \Rightarrow {y^2} + 5k - 2k - 10 = 0\]
\[ \Rightarrow y(y + 5) - 2(y + 5) = 0\]
Taking common;
\[ \Rightarrow (y + 5)(y - 2) = 0\]
\[ \Rightarrow y = 2, - 5\]
\[x = 2 + s\]and \[x = - 5 + s\].
\[ \Rightarrow x = - 5 + s\] and
\[ \Rightarrow x \in \left( { - 5, - 4} \right]\]
\[ \Rightarrow x = 2 + s\] and \[x = 3\]
\[ \Rightarrow x \in \left( {2,3} \right]\]
Required solution set= \[\left( { - 5, - 4} \right]\bigcup {x \in \left( {2,3} \right]} \].
Option (B) is correct.
Note: Nearest Integer functions include rounding of seven different types of functions.
They all deal with the separation of integer or fractional parts from real and complex number: the floor functions , the nearest integer function (round), the ceiling function (least integer), integer part of the quotient etc
Solving a quadratic equation: \[a{x^2} + bx + c = 0\]by using middle term splitting or using discriminant method.
Complete step-by-step answer:
Let, \[x = y\], where y is an integer.
The given equation can be written as:
\[ \Rightarrow {y^2} + {(y + 1)^2} = 25\]
On simplifying above equation we get,
\[ \Rightarrow {y^2} + {y^2} + 1 + 2y = 25\]
\[ \Rightarrow 2{y^2} + 2y = 25 - 1\]
\[ \Rightarrow 2{y^2} + 2y - 24 = 0\]
\[ \Rightarrow {y^2} + y - 12 = 0\]
\[ \Rightarrow {y^2} + 4y - 3y - 12 = 0\]
\[ \Rightarrow y(y + 4) - 3(y + 4) = 0\]
Taking \[(y + 4)\] common we get,
\[ \Rightarrow (y + 4)(y - 3) = 0\]
\[ \Rightarrow y = - 4;y = 3\]
\[ \Rightarrow x = - 4;x = 3\]
If \[x = y + s\]; where y is an integer and \[0 < s < 1\].
The equation can be written as:
\[ \Rightarrow {(y + 1)^2} + {(y + 2)^2} = 25\]
On simplifying above equation, we get:
\[ \Rightarrow {y^2} + 1 + 2y + {y^2} + 4 + 4y = 25\]
\[ \Rightarrow 2{y^2} + 6y = 25 - 5\]
\[ \Rightarrow 2{y^2} + 6y = 20\]
\[ \Rightarrow 2{y^2} + 6y - 2 = 0\]
\[ \Rightarrow {y^2} + 3k - 10 = 0\]
\[ \Rightarrow {y^2} + 5k - 2k - 10 = 0\]
\[ \Rightarrow y(y + 5) - 2(y + 5) = 0\]
Taking common;
\[ \Rightarrow (y + 5)(y - 2) = 0\]
\[ \Rightarrow y = 2, - 5\]
\[x = 2 + s\]and \[x = - 5 + s\].
\[ \Rightarrow x = - 5 + s\] and
\[ \Rightarrow x \in \left( { - 5, - 4} \right]\]
\[ \Rightarrow x = 2 + s\] and \[x = 3\]
\[ \Rightarrow x \in \left( {2,3} \right]\]
Required solution set= \[\left( { - 5, - 4} \right]\bigcup {x \in \left( {2,3} \right]} \].
Option (B) is correct.
Note: Nearest Integer functions include rounding of seven different types of functions.
They all deal with the separation of integer or fractional parts from real and complex number: the floor functions , the nearest integer function (round), the ceiling function (least integer), integer part of the quotient etc
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it