
The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is
a.$\left\{ {\dfrac{p}{q},\dfrac{q}{p}} \right\}$
b.$\left\{ {pq,\dfrac{p}{q}} \right\}$
c.$\left\{ {\dfrac{q}{p},pq} \right\}$
d.$\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
Answer
573.6k+ views
Hint: We are given a quadratic equation and we need to solve it to find the solution so we will solve it using the formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step answer:
We are given a quadratic equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$and we can solve it using the formula method
The formula to solve a quadratic equation $a{x^2} - bx + c = 0$is $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now in our given equation ,
$ \Rightarrow a = pq,b = - {(p + q)^2},c = {(p + q)^2}$
Substituting in the formula , we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{{(p + q)}^2}} \right)}^2} - 4pq{{(p + q)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{{(p + q)}^2} - 4pq} \right)} }}{{2pq}} \\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} + 2pq - 4pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} - 2pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}{{\left( {p - q} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{p^2} - {q^2}} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\]
Now taking the positive sign we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} + \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq + {p^2} - {q^2}}}{{2pq}} = \dfrac{{2{p^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2p(p + q)}}{{2pq}} = \dfrac{{p + q}}{q} \\
\]
Now taking the negative sign
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} - \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq - {p^2} + {q^2}}}{{2pq}} = \dfrac{{2{q^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2q(p + q)}}{{2pq}} = \dfrac{{p + q}}{p} \\
\]
Hence the solution set is $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
The correct option is d.
Note: Alternative method
The given equation is $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$
We know that the
Sum of the roots =$\dfrac{{ - b}}{a}$ =$\dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
Product of the roots ,$ = \dfrac{c}{a} = \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
From the product we can write as
$ \Rightarrow \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}} = \dfrac{{p + q}}{p}*\dfrac{{p + q}}{q}$
Hence from this we get that $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$are the roots
Complete step-by-step answer:
We are given a quadratic equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$and we can solve it using the formula method
The formula to solve a quadratic equation $a{x^2} - bx + c = 0$is $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now in our given equation ,
$ \Rightarrow a = pq,b = - {(p + q)^2},c = {(p + q)^2}$
Substituting in the formula , we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{{(p + q)}^2}} \right)}^2} - 4pq{{(p + q)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{{(p + q)}^2} - 4pq} \right)} }}{{2pq}} \\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} + 2pq - 4pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} - 2pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}{{\left( {p - q} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{p^2} - {q^2}} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\]
Now taking the positive sign we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} + \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq + {p^2} - {q^2}}}{{2pq}} = \dfrac{{2{p^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2p(p + q)}}{{2pq}} = \dfrac{{p + q}}{q} \\
\]
Now taking the negative sign
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} - \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq - {p^2} + {q^2}}}{{2pq}} = \dfrac{{2{q^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2q(p + q)}}{{2pq}} = \dfrac{{p + q}}{p} \\
\]
Hence the solution set is $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
The correct option is d.
Note: Alternative method
The given equation is $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$
We know that the
Sum of the roots =$\dfrac{{ - b}}{a}$ =$\dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
Product of the roots ,$ = \dfrac{c}{a} = \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
From the product we can write as
$ \Rightarrow \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}} = \dfrac{{p + q}}{p}*\dfrac{{p + q}}{q}$
Hence from this we get that $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$are the roots
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

