
The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is
a.$\left\{ {\dfrac{p}{q},\dfrac{q}{p}} \right\}$
b.$\left\{ {pq,\dfrac{p}{q}} \right\}$
c.$\left\{ {\dfrac{q}{p},pq} \right\}$
d.$\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
Answer
587.7k+ views
Hint: We are given a quadratic equation and we need to solve it to find the solution so we will solve it using the formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step answer:
We are given a quadratic equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$and we can solve it using the formula method
The formula to solve a quadratic equation $a{x^2} - bx + c = 0$is $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now in our given equation ,
$ \Rightarrow a = pq,b = - {(p + q)^2},c = {(p + q)^2}$
Substituting in the formula , we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{{(p + q)}^2}} \right)}^2} - 4pq{{(p + q)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{{(p + q)}^2} - 4pq} \right)} }}{{2pq}} \\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} + 2pq - 4pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} - 2pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}{{\left( {p - q} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{p^2} - {q^2}} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\]
Now taking the positive sign we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} + \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq + {p^2} - {q^2}}}{{2pq}} = \dfrac{{2{p^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2p(p + q)}}{{2pq}} = \dfrac{{p + q}}{q} \\
\]
Now taking the negative sign
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} - \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq - {p^2} + {q^2}}}{{2pq}} = \dfrac{{2{q^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2q(p + q)}}{{2pq}} = \dfrac{{p + q}}{p} \\
\]
Hence the solution set is $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
The correct option is d.
Note: Alternative method
The given equation is $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$
We know that the
Sum of the roots =$\dfrac{{ - b}}{a}$ =$\dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
Product of the roots ,$ = \dfrac{c}{a} = \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
From the product we can write as
$ \Rightarrow \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}} = \dfrac{{p + q}}{p}*\dfrac{{p + q}}{q}$
Hence from this we get that $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$are the roots
Complete step-by-step answer:
We are given a quadratic equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$and we can solve it using the formula method
The formula to solve a quadratic equation $a{x^2} - bx + c = 0$is $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now in our given equation ,
$ \Rightarrow a = pq,b = - {(p + q)^2},c = {(p + q)^2}$
Substituting in the formula , we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{{(p + q)}^2}} \right)}^2} - 4pq{{(p + q)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{{(p + q)}^2} - 4pq} \right)} }}{{2pq}} \\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} + 2pq - 4pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} - 2pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}{{\left( {p - q} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{p^2} - {q^2}} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\]
Now taking the positive sign we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} + \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq + {p^2} - {q^2}}}{{2pq}} = \dfrac{{2{p^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2p(p + q)}}{{2pq}} = \dfrac{{p + q}}{q} \\
\]
Now taking the negative sign
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} - \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq - {p^2} + {q^2}}}{{2pq}} = \dfrac{{2{q^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2q(p + q)}}{{2pq}} = \dfrac{{p + q}}{p} \\
\]
Hence the solution set is $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
The correct option is d.
Note: Alternative method
The given equation is $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$
We know that the
Sum of the roots =$\dfrac{{ - b}}{a}$ =$\dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
Product of the roots ,$ = \dfrac{c}{a} = \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
From the product we can write as
$ \Rightarrow \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}} = \dfrac{{p + q}}{p}*\dfrac{{p + q}}{q}$
Hence from this we get that $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$are the roots
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

