
The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is
a.$\left\{ {\dfrac{p}{q},\dfrac{q}{p}} \right\}$
b.$\left\{ {pq,\dfrac{p}{q}} \right\}$
c.$\left\{ {\dfrac{q}{p},pq} \right\}$
d.$\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
Answer
507k+ views
Hint: We are given a quadratic equation and we need to solve it to find the solution so we will solve it using the formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step answer:
We are given a quadratic equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$and we can solve it using the formula method
The formula to solve a quadratic equation $a{x^2} - bx + c = 0$is $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now in our given equation ,
$ \Rightarrow a = pq,b = - {(p + q)^2},c = {(p + q)^2}$
Substituting in the formula , we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{{(p + q)}^2}} \right)}^2} - 4pq{{(p + q)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{{(p + q)}^2} - 4pq} \right)} }}{{2pq}} \\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} + 2pq - 4pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} - 2pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}{{\left( {p - q} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{p^2} - {q^2}} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\]
Now taking the positive sign we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} + \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq + {p^2} - {q^2}}}{{2pq}} = \dfrac{{2{p^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2p(p + q)}}{{2pq}} = \dfrac{{p + q}}{q} \\
\]
Now taking the negative sign
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} - \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq - {p^2} + {q^2}}}{{2pq}} = \dfrac{{2{q^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2q(p + q)}}{{2pq}} = \dfrac{{p + q}}{p} \\
\]
Hence the solution set is $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
The correct option is d.
Note: Alternative method
The given equation is $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$
We know that the
Sum of the roots =$\dfrac{{ - b}}{a}$ =$\dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
Product of the roots ,$ = \dfrac{c}{a} = \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
From the product we can write as
$ \Rightarrow \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}} = \dfrac{{p + q}}{p}*\dfrac{{p + q}}{q}$
Hence from this we get that $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$are the roots
Complete step-by-step answer:
We are given a quadratic equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$and we can solve it using the formula method
The formula to solve a quadratic equation $a{x^2} - bx + c = 0$is $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now in our given equation ,
$ \Rightarrow a = pq,b = - {(p + q)^2},c = {(p + q)^2}$
Substituting in the formula , we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{{(p + q)}^2}} \right)}^2} - 4pq{{(p + q)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{{(p + q)}^2} - 4pq} \right)} }}{{2pq}} \\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} + 2pq - 4pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}\left( {{p^2} + {q^2} - 2pq} \right)} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{(p + q)}^2}{{\left( {p - q} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \sqrt {{{\left( {{p^2} - {q^2}} \right)}^2}} }}{{2pq}} \\
\\
\Rightarrow x = \dfrac{{{{(p + q)}^2} \pm \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\]
Now taking the positive sign we get
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} + \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq + {p^2} - {q^2}}}{{2pq}} = \dfrac{{2{p^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2p(p + q)}}{{2pq}} = \dfrac{{p + q}}{q} \\
\]
Now taking the negative sign
\[
\Rightarrow x = \dfrac{{{{(p + q)}^2} - \left( {{p^2} - {q^2}} \right)}}{{2pq}} \\
\Rightarrow x = \dfrac{{{p^2} + {q^2} + 2pq - {p^2} + {q^2}}}{{2pq}} = \dfrac{{2{q^2} + 2pq}}{{2pq}} \\
\Rightarrow x = \dfrac{{2q(p + q)}}{{2pq}} = \dfrac{{p + q}}{p} \\
\]
Hence the solution set is $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$
The correct option is d.
Note: Alternative method
The given equation is $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$
We know that the
Sum of the roots =$\dfrac{{ - b}}{a}$ =$\dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
Product of the roots ,$ = \dfrac{c}{a} = \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}}$
From the product we can write as
$ \Rightarrow \dfrac{{{{\left( {p + q} \right)}^2}}}{{pq}} = \dfrac{{p + q}}{p}*\dfrac{{p + q}}{q}$
Hence from this we get that $\left\{ {\dfrac{{p + q}}{p},\dfrac{{p + q}}{q}} \right\}$are the roots
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Difference between mass and weight class 10 physics CBSE

What is the past participle of wear Is it worn or class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

A farmer moves along the boundary of a square fiel-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE
