
The solution of \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\] is
A.\[ \pm \dfrac{1}{3}\]
B.\[ \pm \dfrac{1}{4}\]
C.\[ \pm \dfrac{{\sqrt 3 }}{2}\]
D.\[ \pm \dfrac{1}{2}\]
Answer
493.2k+ views
Hint: In mathematics , the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios.
Formulas used in the solution part are as follows :
\[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
\[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
Complete step-by-step answer:
We are given the equation \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\]
We have \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\] or \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
By taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get
\[x = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
Now using the identity \[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
We get ,
\[x = \sin \dfrac{\pi }{3}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \cos \dfrac{\pi }{3}\sin \left( {{{\sin }^{ - 1}}2x} \right)\]
Which simplifies to
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \dfrac{1}{2}(2x)\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} + \dfrac{1}{2}(2x)\]
On further simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Now taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = - \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get ,
\[\sin ({\sin ^{ - 1}}x) = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
Now using the identity \[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
We get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x} \right)\cos \dfrac{\pi }{3} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\sin \dfrac{\pi }{3}\]
Which simplifies to ,
\[x = (2x)\dfrac{1}{2} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\dfrac{{\sqrt 3 }}{2}\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = (2x)\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} \]
On simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Therefore option(4) is the correct answer.
So, the correct answer is “Option 4”.
Note: Inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios. keep in mind all the trigonometric identities.
Formulas used in the solution part are as follows :
\[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
\[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
Complete step-by-step answer:
We are given the equation \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\]
We have \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\] or \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
By taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get
\[x = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
Now using the identity \[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
We get ,
\[x = \sin \dfrac{\pi }{3}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \cos \dfrac{\pi }{3}\sin \left( {{{\sin }^{ - 1}}2x} \right)\]
Which simplifies to
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \dfrac{1}{2}(2x)\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} + \dfrac{1}{2}(2x)\]
On further simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Now taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = - \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get ,
\[\sin ({\sin ^{ - 1}}x) = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
Now using the identity \[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
We get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x} \right)\cos \dfrac{\pi }{3} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\sin \dfrac{\pi }{3}\]
Which simplifies to ,
\[x = (2x)\dfrac{1}{2} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\dfrac{{\sqrt 3 }}{2}\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = (2x)\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} \]
On simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Therefore option(4) is the correct answer.
So, the correct answer is “Option 4”.
Note: Inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios. keep in mind all the trigonometric identities.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

