
The solution of \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\] is
A.\[ \pm \dfrac{1}{3}\]
B.\[ \pm \dfrac{1}{4}\]
C.\[ \pm \dfrac{{\sqrt 3 }}{2}\]
D.\[ \pm \dfrac{1}{2}\]
Answer
493.2k+ views
Hint: In mathematics , the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios.
Formulas used in the solution part are as follows :
\[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
\[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
Complete step-by-step answer:
We are given the equation \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\]
We have \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\] or \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
By taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get
\[x = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
Now using the identity \[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
We get ,
\[x = \sin \dfrac{\pi }{3}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \cos \dfrac{\pi }{3}\sin \left( {{{\sin }^{ - 1}}2x} \right)\]
Which simplifies to
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \dfrac{1}{2}(2x)\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} + \dfrac{1}{2}(2x)\]
On further simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Now taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = - \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get ,
\[\sin ({\sin ^{ - 1}}x) = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
Now using the identity \[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
We get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x} \right)\cos \dfrac{\pi }{3} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\sin \dfrac{\pi }{3}\]
Which simplifies to ,
\[x = (2x)\dfrac{1}{2} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\dfrac{{\sqrt 3 }}{2}\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = (2x)\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} \]
On simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Therefore option(4) is the correct answer.
So, the correct answer is “Option 4”.
Note: Inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios. keep in mind all the trigonometric identities.
Formulas used in the solution part are as follows :
\[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
\[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
Complete step-by-step answer:
We are given the equation \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\]
We have \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\] or \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
By taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get
\[x = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
Now using the identity \[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
We get ,
\[x = \sin \dfrac{\pi }{3}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \cos \dfrac{\pi }{3}\sin \left( {{{\sin }^{ - 1}}2x} \right)\]
Which simplifies to
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \dfrac{1}{2}(2x)\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} + \dfrac{1}{2}(2x)\]
On further simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Now taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = - \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get ,
\[\sin ({\sin ^{ - 1}}x) = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
Now using the identity \[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
We get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x} \right)\cos \dfrac{\pi }{3} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\sin \dfrac{\pi }{3}\]
Which simplifies to ,
\[x = (2x)\dfrac{1}{2} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\dfrac{{\sqrt 3 }}{2}\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = (2x)\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} \]
On simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Therefore option(4) is the correct answer.
So, the correct answer is “Option 4”.
Note: Inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios. keep in mind all the trigonometric identities.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

