
The solution of \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\] is
A.\[ \pm \dfrac{1}{3}\]
B.\[ \pm \dfrac{1}{4}\]
C.\[ \pm \dfrac{{\sqrt 3 }}{2}\]
D.\[ \pm \dfrac{1}{2}\]
Answer
411k+ views
Hint: In mathematics , the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios.
Formulas used in the solution part are as follows :
\[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
\[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
Complete step-by-step answer:
We are given the equation \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\]
We have \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\] or \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
By taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get
\[x = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
Now using the identity \[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
We get ,
\[x = \sin \dfrac{\pi }{3}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \cos \dfrac{\pi }{3}\sin \left( {{{\sin }^{ - 1}}2x} \right)\]
Which simplifies to
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \dfrac{1}{2}(2x)\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} + \dfrac{1}{2}(2x)\]
On further simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Now taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = - \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get ,
\[\sin ({\sin ^{ - 1}}x) = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
Now using the identity \[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
We get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x} \right)\cos \dfrac{\pi }{3} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\sin \dfrac{\pi }{3}\]
Which simplifies to ,
\[x = (2x)\dfrac{1}{2} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\dfrac{{\sqrt 3 }}{2}\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = (2x)\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} \]
On simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Therefore option(4) is the correct answer.
So, the correct answer is “Option 4”.
Note: Inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios. keep in mind all the trigonometric identities.
Formulas used in the solution part are as follows :
\[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
\[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
\[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
Complete step-by-step answer:
We are given the equation \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \pm \dfrac{\pi }{3}\]
We have \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\] or \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
By taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get
\[x = \sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}2x} \right)\]
Now using the identity \[\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \]
We get ,
\[x = \sin \dfrac{\pi }{3}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \cos \dfrac{\pi }{3}\sin \left( {{{\sin }^{ - 1}}2x} \right)\]
Which simplifies to
\[x = \dfrac{{\sqrt 3 }}{2}\cos \left( {{{\sin }^{ - 1}}2x} \right) + \dfrac{1}{2}(2x)\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} + \dfrac{1}{2}(2x)\]
On further simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Now taking \[{\sin ^{ - 1}}x - {\sin ^{ - 1}}2x = - \dfrac{\pi }{3}\]
We get \[{\sin ^{ - 1}}x = - \dfrac{\pi }{3} + {\sin ^{ - 1}}2x\]
Now computing \[\sin \] on both the sides we get ,
\[\sin ({\sin ^{ - 1}}x) = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated . therefore we get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x - \dfrac{\pi }{3}} \right)\]
Now using the identity \[\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]
We get ,
\[x = \sin \left( {{{\sin }^{ - 1}}2x} \right)\cos \dfrac{\pi }{3} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\sin \dfrac{\pi }{3}\]
Which simplifies to ,
\[x = (2x)\dfrac{1}{2} - \cos \left( {{{\sin }^{ - 1}}2x} \right)\dfrac{{\sqrt 3 }}{2}\]
we know that \[\cos \left( {{{\sin }^{ - 1}}\theta } \right) = \sqrt {1 - {\theta ^2}} \]
hence we get ,
\[x = (2x)\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}\sqrt {1 - {{(2x)}^2}} \]
On simplification we get ,
\[0 = 1 - 4{x^2}\]
Which gives us \[x = \pm \dfrac{1}{2}\]
Therefore option(4) is the correct answer.
So, the correct answer is “Option 4”.
Note: Inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios. keep in mind all the trigonometric identities.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
