
The solution of $\dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\cos \left( \theta +\dfrac{\pi }{4} \right)$
A. $n\pi $
B. $n\pi +\dfrac{\pi }{12}$
C. $n\pi \pm \dfrac{\pi }{2}$
D. $2n\pi $
Answer
547.5k+ views
Hint: First we will expand the term $\cos \left( \theta +\dfrac{\pi }{4} \right)$ by using the formula $\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B$. Now we will substitute the value $\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and simplify the term in the right side of the given equation. Now in the left side we have the terms $\sin 3\theta $, $\cos 3\theta $. So we will use the formulas $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $ then we will simplify the terms in the right side and equate the obtained value to the simplified form of the right side term. Now we will solve the obtained equation to get the result.
Complete step-by-step answer:
Given that,
$\dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\cos \left( \theta +\dfrac{\pi }{4} \right)$
Expanding the term $\cos \left( \theta +\dfrac{\pi }{4} \right)$ by using the formula $\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B$, then we will get
$\Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\left[ \cos \theta .\cos \dfrac{\pi }{4}-\sin \theta .\sin \dfrac{\pi }{4} \right]$
Now substituting the value $\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ in the above equation, we will get
$\begin{align}
& \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\left[ \cos \theta .\dfrac{1}{\sqrt{2}}-\sin \theta .\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\times \dfrac{1}{\sqrt{2}}\left[ \cos \theta -\sin \theta \right] \\
& \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\
\end{align}$
We know that $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $, so substituting these values in the above equation, then we will have
$\begin{align}
& \Rightarrow \dfrac{3\sin \theta -\left( 3\sin \theta -4{{\sin }^{3}}\theta \right)}{1+\cos \theta }+\dfrac{3\cos \theta +4{{\cos }^{3}}\theta -3\cos \theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }+\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\
\end{align}$
Multiplying the term $\dfrac{1-\cos \theta }{1-\cos \theta }$ with $\dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }$ and $\dfrac{1+\sin \theta }{1+\sin \theta }$ with $\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }$ in the above equation, then we will get
$\Rightarrow \dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }+\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }\times \dfrac{1+\sin \theta }{1+\sin \theta }=4\left( \cos \theta -\sin \theta \right)$
Using the formula $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ in the above equation, then we will get
$\Rightarrow \dfrac{4{{\sin }^{3}}\theta \left( 1-\cos \theta \right)}{{{1}^{2}}-{{\cos }^{2}}\theta }+\dfrac{4{{\cos }^{3}}\theta \left( 1+\sin \theta \right)}{{{1}^{2}}-{{\sin }^{2}}\theta }=4\left( \cos \theta -\sin \theta \right)$
We have the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, from this identity the values of $1-{{\cos }^{2}}\theta $ and $1-{{\sin }^{2}}\theta $ are ${{\sin }^{2}}\theta $, ${{\cos }^{2}}\theta $ respectively. Substituting these values in the above equation, then we will have
$\begin{align}
& \Rightarrow \dfrac{4{{\sin }^{3}}\theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }+\dfrac{4{{\cos }^{3}}\theta \left( 1+\sin \theta \right)}{{{\cos }^{2}}\theta }=4\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow 4\sin \theta \left( 1-\cos \theta \right)+4\cos \theta \left( 1+\sin \theta \right)=4\left( \cos \theta -\sin \theta \right) \\
\end{align}$
Applying multiplication distribution law in the above equation, then we will get
$\begin{align}
& \Rightarrow 4\sin \theta -4\sin \theta .\cos \theta +4\cos \theta +4\cos \theta .\sin \theta =4\cos \theta -4\sin \theta \\
& \Rightarrow 4\sin \theta +4\cos \theta -4\cos \theta +4\sin \theta =0 \\
& \Rightarrow 8\sin \theta =0 \\
& \Rightarrow \sin \theta =0 \\
\end{align}$
We know that the solution for the equation $\sin \theta =0$ is given by $\theta =n\pi $.
Hence the solution for the given equation is $\theta =n\pi $.
So, the correct answer is “Option A”.
Note: We can also solve the problem by drawing the equation in graph. When we solve the given equation, we get the equation $\sin \theta =0$ so draw a graph for the $\sin \theta =0$ as shown in the figure below.
Here we can clearly observe that the equation has zero value for $\theta =\pm \pi ,\pm 2\pi ,\pm 3\pi ,...$. We can simply write it as $\theta =n\pi $. From both the methods we got the same result.
Complete step-by-step answer:
Given that,
$\dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\cos \left( \theta +\dfrac{\pi }{4} \right)$
Expanding the term $\cos \left( \theta +\dfrac{\pi }{4} \right)$ by using the formula $\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B$, then we will get
$\Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\left[ \cos \theta .\cos \dfrac{\pi }{4}-\sin \theta .\sin \dfrac{\pi }{4} \right]$
Now substituting the value $\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ in the above equation, we will get
$\begin{align}
& \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\left[ \cos \theta .\dfrac{1}{\sqrt{2}}-\sin \theta .\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\times \dfrac{1}{\sqrt{2}}\left[ \cos \theta -\sin \theta \right] \\
& \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\
\end{align}$
We know that $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $, so substituting these values in the above equation, then we will have
$\begin{align}
& \Rightarrow \dfrac{3\sin \theta -\left( 3\sin \theta -4{{\sin }^{3}}\theta \right)}{1+\cos \theta }+\dfrac{3\cos \theta +4{{\cos }^{3}}\theta -3\cos \theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }+\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\
\end{align}$
Multiplying the term $\dfrac{1-\cos \theta }{1-\cos \theta }$ with $\dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }$ and $\dfrac{1+\sin \theta }{1+\sin \theta }$ with $\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }$ in the above equation, then we will get
$\Rightarrow \dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }+\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }\times \dfrac{1+\sin \theta }{1+\sin \theta }=4\left( \cos \theta -\sin \theta \right)$
Using the formula $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ in the above equation, then we will get
$\Rightarrow \dfrac{4{{\sin }^{3}}\theta \left( 1-\cos \theta \right)}{{{1}^{2}}-{{\cos }^{2}}\theta }+\dfrac{4{{\cos }^{3}}\theta \left( 1+\sin \theta \right)}{{{1}^{2}}-{{\sin }^{2}}\theta }=4\left( \cos \theta -\sin \theta \right)$
We have the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, from this identity the values of $1-{{\cos }^{2}}\theta $ and $1-{{\sin }^{2}}\theta $ are ${{\sin }^{2}}\theta $, ${{\cos }^{2}}\theta $ respectively. Substituting these values in the above equation, then we will have
$\begin{align}
& \Rightarrow \dfrac{4{{\sin }^{3}}\theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }+\dfrac{4{{\cos }^{3}}\theta \left( 1+\sin \theta \right)}{{{\cos }^{2}}\theta }=4\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow 4\sin \theta \left( 1-\cos \theta \right)+4\cos \theta \left( 1+\sin \theta \right)=4\left( \cos \theta -\sin \theta \right) \\
\end{align}$
Applying multiplication distribution law in the above equation, then we will get
$\begin{align}
& \Rightarrow 4\sin \theta -4\sin \theta .\cos \theta +4\cos \theta +4\cos \theta .\sin \theta =4\cos \theta -4\sin \theta \\
& \Rightarrow 4\sin \theta +4\cos \theta -4\cos \theta +4\sin \theta =0 \\
& \Rightarrow 8\sin \theta =0 \\
& \Rightarrow \sin \theta =0 \\
\end{align}$
We know that the solution for the equation $\sin \theta =0$ is given by $\theta =n\pi $.
Hence the solution for the given equation is $\theta =n\pi $.
So, the correct answer is “Option A”.
Note: We can also solve the problem by drawing the equation in graph. When we solve the given equation, we get the equation $\sin \theta =0$ so draw a graph for the $\sin \theta =0$ as shown in the figure below.
Here we can clearly observe that the equation has zero value for $\theta =\pm \pi ,\pm 2\pi ,\pm 3\pi ,...$. We can simply write it as $\theta =n\pi $. From both the methods we got the same result.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

