
The solubility product of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ is $7.4 \times {10^{ - 11}}$
.Calculate the solubility of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ in 0.1 M NaF solution.
A.$7.4 \times {10^{ - 9}}$
B.$3.7 \times {10^{ - 9}}$
C. $3.7 \times {10^{ - 11}}$
D. $7.4 \times {10^{ - 11}}$
Answer
582.6k+ views
Hint:We know that, the product of concentration of the ions of the salt in its saturated solution at a given temperature raised to the power the number of ions produced by the dissociation of one mol of the salt is the solubility product.
Complete step by step answer:First, we write the solubility equilibrium in case of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$.
$MgF_2\rightleftharpoons Mg^{+2}+2F^{-} $ …… (1)
Let’s take the solubility of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ be\[{\rm{S}}\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\]. So, the concentration of magnesium ion $\left( {{\rm{M}}{{\rm{g}}^{2 + }}} \right)$ will be \[{\rm{S}}\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\] and concentration of fluoride ion $\left( {{{\rm{F}}^ - }} \right)$ is \[{\rm{2S}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\]
Now, we write the dissociation of NaF.
${\rm{NaF}} \to {\rm{N}}{{\rm{a}}^ + } + {{\rm{F}}^ - }$
Given that NaF is of 0.1 M. So, concentration of sodium ion $\left( {{\rm{N}}{{\rm{a}}^ + }} \right)$ is 0.1 M and fluoride ion $\left( {{{\rm{F}}^ - }} \right)$ is 0.1 M.
Now, we write the solubility product expression of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ using equation (1).
${K_{sp}} = \left[ {{\rm{M}}{{\rm{g}}^{2 + }}} \right]{\left[ {{{\rm{F}}^ - }} \right]^2}$
…… (2)
The solubility product is given as $7.4 \times {10^{ - 11}}$. The concentration of ${\rm{M}}{{\rm{g}}^{2 + }}$ is S\[\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\]. Now, we need the fluoride ion concentration.
As ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$is soluble in NaF, the fluoride concentration is equal to the summation of $\left[ {{{\rm{F}}^ - }} \right]$ from ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ and $\left[ {{{\rm{F}}^ - }} \right]$ from NaF.
$\left[ {{{\rm{F}}^ - }} \right] = \left[ {{{\rm{F}}^ - }} \right]\,\,{\rm{from}}\;\,{\rm{Mg}}{{\rm{F}}_{\rm{2}}} + \left[ {{{\rm{F}}^ - }} \right]\,\,{\rm{from}}\,\;{\rm{NaF}}$
The fluoride ion concentration from ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ is 2S\[\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\] and fluoride ion concentration from NaF is 0.1 M. So, the total fluoride concentration is,
$\left[ {{{\rm{F}}^ - }} \right] = 2S + 0.1$
As value of ${K_{sp}}$ is very small, ${\rm{2S}} + 0.{\rm{1}} \approx 0.1$
So, the fluoride concentration is 0.1.
Now, we have to substitute the value of ${K_{sp}}$, $\left[ {{{\rm{F}}^ - }} \right]$ and $\left[ {{\rm{M}}{{\rm{g}}^{2 + }}} \right]$ in equation (2).
${K_{sp}} = \left[ {{\rm{M}}{{\rm{g}}^{2 + }}} \right]{\left[ {{{\rm{F}}^ - }} \right]^2}$
$7.4 \times {10^{ - 11}} = S \times {\left( {0.1} \right)^2}$
$S = \dfrac{{7.4 \times {{10}^{ - 11}}}}{{0.01}}$
$S = 7.4 \times {10^{ - 9}}\,$
Hence, the solubility of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ in 0.1 M NaF solution is $7.4 \times {10^{ - 9}}\,{\rm{M}}$.
Hence, the correct answer is A.
Note: Remember that solubility product is the product of ionic concentration in the saturated solution whereas ionic product is the product of ionic concentration at any concentration of the solution. Solubility products have a fixed value for a salt at a constant temperature but the value of ionic product changes with the change of concentration of the ion.
Complete step by step answer:First, we write the solubility equilibrium in case of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$.
$MgF_2\rightleftharpoons Mg^{+2}+2F^{-} $ …… (1)
Let’s take the solubility of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ be\[{\rm{S}}\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\]. So, the concentration of magnesium ion $\left( {{\rm{M}}{{\rm{g}}^{2 + }}} \right)$ will be \[{\rm{S}}\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\] and concentration of fluoride ion $\left( {{{\rm{F}}^ - }} \right)$ is \[{\rm{2S}}\,\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\]
Now, we write the dissociation of NaF.
${\rm{NaF}} \to {\rm{N}}{{\rm{a}}^ + } + {{\rm{F}}^ - }$
Given that NaF is of 0.1 M. So, concentration of sodium ion $\left( {{\rm{N}}{{\rm{a}}^ + }} \right)$ is 0.1 M and fluoride ion $\left( {{{\rm{F}}^ - }} \right)$ is 0.1 M.
Now, we write the solubility product expression of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ using equation (1).
${K_{sp}} = \left[ {{\rm{M}}{{\rm{g}}^{2 + }}} \right]{\left[ {{{\rm{F}}^ - }} \right]^2}$
…… (2)
The solubility product is given as $7.4 \times {10^{ - 11}}$. The concentration of ${\rm{M}}{{\rm{g}}^{2 + }}$ is S\[\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\]. Now, we need the fluoride ion concentration.
As ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$is soluble in NaF, the fluoride concentration is equal to the summation of $\left[ {{{\rm{F}}^ - }} \right]$ from ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ and $\left[ {{{\rm{F}}^ - }} \right]$ from NaF.
$\left[ {{{\rm{F}}^ - }} \right] = \left[ {{{\rm{F}}^ - }} \right]\,\,{\rm{from}}\;\,{\rm{Mg}}{{\rm{F}}_{\rm{2}}} + \left[ {{{\rm{F}}^ - }} \right]\,\,{\rm{from}}\,\;{\rm{NaF}}$
The fluoride ion concentration from ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ is 2S\[\,{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}\] and fluoride ion concentration from NaF is 0.1 M. So, the total fluoride concentration is,
$\left[ {{{\rm{F}}^ - }} \right] = 2S + 0.1$
As value of ${K_{sp}}$ is very small, ${\rm{2S}} + 0.{\rm{1}} \approx 0.1$
So, the fluoride concentration is 0.1.
Now, we have to substitute the value of ${K_{sp}}$, $\left[ {{{\rm{F}}^ - }} \right]$ and $\left[ {{\rm{M}}{{\rm{g}}^{2 + }}} \right]$ in equation (2).
${K_{sp}} = \left[ {{\rm{M}}{{\rm{g}}^{2 + }}} \right]{\left[ {{{\rm{F}}^ - }} \right]^2}$
$7.4 \times {10^{ - 11}} = S \times {\left( {0.1} \right)^2}$
$S = \dfrac{{7.4 \times {{10}^{ - 11}}}}{{0.01}}$
$S = 7.4 \times {10^{ - 9}}\,$
Hence, the solubility of ${\rm{Mg}}{{\rm{F}}_{\rm{2}}}$ in 0.1 M NaF solution is $7.4 \times {10^{ - 9}}\,{\rm{M}}$.
Hence, the correct answer is A.
Note: Remember that solubility product is the product of ionic concentration in the saturated solution whereas ionic product is the product of ionic concentration at any concentration of the solution. Solubility products have a fixed value for a salt at a constant temperature but the value of ionic product changes with the change of concentration of the ion.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

