Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The solubility product of ${\text{Cr}}{\left( {{\text{OH}}} \right)_3}$ at $298{\text{ K}}$ is $6.0 \times {10^{ - 31}}$. The concentration of hydroxide ions in a saturated solution of ${\text{Cr}}{\left( {{\text{OH}}} \right)_3}$ will be:
A) ${\left( {2.22 \times {{10}^{ - 31}}} \right)^{{\text{1/4}}}}$
B) ${\left( {4.86 \times {{10}^{ - 29}}} \right)^{{\text{1/4}}}}$
C) ${\left( {18 \times {{10}^{ - 31}}} \right)^{{\text{1/2}}}}$
D) ${\left( {18 \times {{10}^{ - 31}}} \right)^{{\text{1/4}}}}$

Answer
VerifiedVerified
550.8k+ views
Hint:We know that the solubility product of any salt at any temperature is the product of the molar concentration of its constituent ions. The concentration of ions is raised to the number of ions produced on dissociation of one molecule of the salt.

Complete solution:
We know that the solubility product of any salt at any temperature is the product of the molar concentration of its constituent ions. The concentration of ions is raised to the number of ions produced on dissociation of one molecule of the salt
We know that the solubility of a salt at any temperature is calculated from its solubility product.
Now, we are given a salt ${\text{Cr}}{\left( {{\text{OH}}} \right)_3}$. The salt dissociates as follows:
${\text{Cr}}{\left( {{\text{OH}}} \right)_3} \rightleftharpoons {\text{C}}{{\text{r}}^{3 + }} + 3{\text{O}}{{\text{H}}^ - }$
The solubility product of the salt ${\text{Cr}}{\left( {{\text{OH}}} \right)_3}$ is given as follows:
${{\text{K}}_{{\text{SP}}}} = [{\text{C}}{{\text{r}}^{3 + }}]{[{\text{O}}{{\text{H}}^ - }]^3}$
Where ${{\text{K}}_{{\text{SP}}}}$ is the solubility product.
For the salt ${\text{Cr}}{\left( {{\text{OH}}} \right)_3}$.
${{\text{K}}_{{\text{SP}}}} = [{\text{C}}{{\text{r}}^{3 + }}]{[{\text{O}}{{\text{H}}^ - }]^3} = s \times {\left( {3s} \right)^3} = 27{s^4}$
Where $s$ is the solubility of the ions.
We are given that the solubility product of salt ${\text{Cr}}{\left( {{\text{OH}}} \right)_3}$ is $6.0 \times {10^{ - 31}}$. Thus,
$27{s^4} = 6.0 \times {10^{ - 31}}$
${3^3}{s^4} = 6.0 \times {10^{ - 31}}$
Multiply both sides by 3. Thus,
${\left( {3s} \right)^4} = 18.0 \times {10^{ - 31}}$
     $3s = {\left( {18.0 \times {{10}^{ - 31}}} \right)^{1/4}}$
Now, the concentration of hydroxide ions is,
$[{\text{O}}{{\text{H}}^ - }] = 3s$
Thus,
$[{\text{O}}{{\text{H}}^ - }] = {\left( {18.0 \times {{10}^{ - 31}}} \right)^{1/4}}$
Thus, the concentration of hydroxide ions in a saturated solution of ${\text{Cr}}{\left( {{\text{OH}}} \right)_3}$ is ${\left( {18 \times {{10}^{ - 31}}} \right)^{{\text{1/4}}}}$.

Thus, the correct option is (D) ${\left( {18 \times {{10}^{ - 31}}} \right)^{{\text{1/4}}}}$.

Note:The solubility product is calculated using the concentration of the ions in which the salt has dissociated. Solubility factor depends on various factors such as temperature, pressure and nature of the electrolyte. The concentration of ions is affected by these factors and thus, the solubility product gets affected.