
The solubility product of \[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\] at 25℃ is \[1.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}}\]. A solution of
\[{{K}_{2}}{{C}_{2}}{{O}_{4}}\] containing 0.1520 mol in 500 mL of water is shaken with excess of
\[A{{g}_{2}}C{{O}_{3}}\] till the following equilibrium is reached.
\[A{{g}_{2}}C{{O}_{3}}+{{K}_{2}}{{C}_{2}}{{O}_{4}}\rightleftharpoons A{{g}_{2}}{{C}_{2}}{{O}_{4}}+{{K}_{2}}C{{O}_{3}}\]
At equilibrium, the solution contains 0.0358 mole of \[{{K}_{2}}C{{O}_{3}}\]. Assuming the degree
of dissociation of \[{{K}_{2}}{{C}_{2}}{{O}_{4}}\] and \[{{K}_{2}}C{{O}_{3}}\] to be equal, calculate the solubility product of \[A{{g}_{2}}C{{O}_{3}}\].
Answer
595.8k+ views
Hint: Solubility product constant, \[{{K}_{sp}}\], is an equilibrium constant for a solid substance which is dissolving in an aqueous solution. It tells us the level at which a solute can dissolve in solution. The more soluble a substance is, the higher will be the value \[{{K}_{sp}}\].
Complete step-by-step answer:
We have been given that \[A{{g}_{2}}C{{O}_{3}}\] is present in excess and it reacts with \[{{K}_{2}}{{C}_{2}}{{O}_{4}}\]. Initially, before the reaction the amount of products will be zero. As the reaction proceeds, the reactants will be depleted to form products. The same thing is depicted in the below equation.
\[\begin{align}
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;A{{g}_{2}}C{{O}_{3}}\;\;\;+\;\;\;{{K}_{2}}{{C}_{2}}{{O}_{4}}\;\;\;\;\;\;\;\rightleftharpoons \;\;\;\;\;\;\;A{{g}_{2}}{{C}_{2}}{{O}_{4}}+{{K}_{2}}C{{O}_{3}} \\
& Moles\,at\,start\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;Excess\;\;\;\;\;\;\;\;\;\;\;\;\;0.1520\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,0 \\
& Moles\,after\,reation\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(0.1520-0.0358)\,\,\,\,\,\,\;\;\;\;\;\;\;\;\;\;\;\;0.0358\,\,\,\,\,\,\,\,\,0.0358 \\
& \,\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=0.1162 \\
\end{align}\]
The molar concentration of \[{{K}_{2}}{{C}_{2}}{{O}_{4}}\] or \[{{C}_{2}}{{O}_{4}}^{2-}\] left unreacted will be;
\[\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]=\dfrac{0.1162}{0.5}=0.2324\,M\]
The molar concentration of \[{{K}_{2}}C{{O}_{3}}\] or \[C{{O}_{3}}^{2-}\] left unreacted will be;
\[\left[ C{{O}_{3}}^{2-} \right]=\dfrac{0.0358}{0.5}=0.0716\,M\]
We have been given that the solubility product (\[{{K}_{sp}}\]) of \[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\]at 25℃ is \[1.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}}\]
Therefore, we can write from the above statement that,
\[{{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]={{K}_{sp}}\] of \[(A{{g}_{2}}{{C}_{2}}{{O}_{4}})\]
We will now substitute the value of concentration of \[\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]\] found earlier.
\[{{\left[ A{{g}^{+}} \right]}^{2}}\left[ 0.2324 \right]=1.29\times {{10}^{-11}}\]
On rearranging,
\[{{\left[ A{{g}^{+}} \right]}^{2}}=\dfrac{1.29\times {{10}^{-11}}}{0.2324}=5.55\times {{10}^{-11}}\]
Now the solubility product (\[{{K}_{sp}}\]) of \[A{{g}_{2}}C{{O}_{3}}\] can be written as,
\[{{K}_{sp}}={{\left[ A{{g}^{+}} \right]}^{2}}\left[ C{{O}_{3}}^{2-} \right]\]
Finally, substituting the values of concentration of \[{{\left[ A{{g}^{+}} \right]}^{2}}\]and \[\left[ C{{O}_{3}}^{2-} \right]\] respectively, we get
\[\begin{align}
& {{K}_{sp}}=5.55\times {{10}^{-11}}\times 0.0716 \\
& \,\,\,\,\,\,\,\,=3.974\times {{10}^{-12}}\,mo{{l}^{3}}{{L}^{-3}} \\
\end{align}\]
Note: We can also find out which compound will precipitate from the data found in the solution. It can be given as:
\[\begin{align}
& {{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]={{\left( \dfrac{2\times 0.0358}{0.5} \right)}^{2}}\left( \dfrac{0.1520}{0.5} \right) \\
& \,\,\,\,=\,6.23\times {{10}^{-3}} \\
\end{align}\]
Since, \[{{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]>{{K}_{sp}}\] of\[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\]\[(1.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}})\]
\[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\] will precipitate out.
Complete step-by-step answer:
We have been given that \[A{{g}_{2}}C{{O}_{3}}\] is present in excess and it reacts with \[{{K}_{2}}{{C}_{2}}{{O}_{4}}\]. Initially, before the reaction the amount of products will be zero. As the reaction proceeds, the reactants will be depleted to form products. The same thing is depicted in the below equation.
\[\begin{align}
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;A{{g}_{2}}C{{O}_{3}}\;\;\;+\;\;\;{{K}_{2}}{{C}_{2}}{{O}_{4}}\;\;\;\;\;\;\;\rightleftharpoons \;\;\;\;\;\;\;A{{g}_{2}}{{C}_{2}}{{O}_{4}}+{{K}_{2}}C{{O}_{3}} \\
& Moles\,at\,start\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;Excess\;\;\;\;\;\;\;\;\;\;\;\;\;0.1520\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,0 \\
& Moles\,after\,reation\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(0.1520-0.0358)\,\,\,\,\,\,\;\;\;\;\;\;\;\;\;\;\;\;0.0358\,\,\,\,\,\,\,\,\,0.0358 \\
& \,\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=0.1162 \\
\end{align}\]
The molar concentration of \[{{K}_{2}}{{C}_{2}}{{O}_{4}}\] or \[{{C}_{2}}{{O}_{4}}^{2-}\] left unreacted will be;
\[\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]=\dfrac{0.1162}{0.5}=0.2324\,M\]
The molar concentration of \[{{K}_{2}}C{{O}_{3}}\] or \[C{{O}_{3}}^{2-}\] left unreacted will be;
\[\left[ C{{O}_{3}}^{2-} \right]=\dfrac{0.0358}{0.5}=0.0716\,M\]
We have been given that the solubility product (\[{{K}_{sp}}\]) of \[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\]at 25℃ is \[1.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}}\]
Therefore, we can write from the above statement that,
\[{{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]={{K}_{sp}}\] of \[(A{{g}_{2}}{{C}_{2}}{{O}_{4}})\]
We will now substitute the value of concentration of \[\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]\] found earlier.
\[{{\left[ A{{g}^{+}} \right]}^{2}}\left[ 0.2324 \right]=1.29\times {{10}^{-11}}\]
On rearranging,
\[{{\left[ A{{g}^{+}} \right]}^{2}}=\dfrac{1.29\times {{10}^{-11}}}{0.2324}=5.55\times {{10}^{-11}}\]
Now the solubility product (\[{{K}_{sp}}\]) of \[A{{g}_{2}}C{{O}_{3}}\] can be written as,
\[{{K}_{sp}}={{\left[ A{{g}^{+}} \right]}^{2}}\left[ C{{O}_{3}}^{2-} \right]\]
Finally, substituting the values of concentration of \[{{\left[ A{{g}^{+}} \right]}^{2}}\]and \[\left[ C{{O}_{3}}^{2-} \right]\] respectively, we get
\[\begin{align}
& {{K}_{sp}}=5.55\times {{10}^{-11}}\times 0.0716 \\
& \,\,\,\,\,\,\,\,=3.974\times {{10}^{-12}}\,mo{{l}^{3}}{{L}^{-3}} \\
\end{align}\]
Note: We can also find out which compound will precipitate from the data found in the solution. It can be given as:
\[\begin{align}
& {{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]={{\left( \dfrac{2\times 0.0358}{0.5} \right)}^{2}}\left( \dfrac{0.1520}{0.5} \right) \\
& \,\,\,\,=\,6.23\times {{10}^{-3}} \\
\end{align}\]
Since, \[{{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]>{{K}_{sp}}\] of\[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\]\[(1.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}})\]
\[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\] will precipitate out.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

