
The solubility of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ in water at ${25^ \circ }{\text{C}}$ is $1 \times {10^{ - 4}}$ mole/litre. What is the solubility in $0.01{\text{M}}$ ${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$ solution? Assume no hydrolysis of ${\text{Co}}_{3 - }^2$ ion.
A)$6 \times {\text{1}}{{\text{0}}^{ - 6}}$ mole/litre
B)$4 \times {10^{ - 5}}$ mole/litre
C)${10^{ - 5}}$ mole/litre
D)$2 \times {10^{ - 5}}$ mole/litre
Answer
585.9k+ views
Hint: We can use the formula of ${{\text{K}}_{{\text{sp}}}}$ Solubility product which is the product of concentrations of ions with the power raised to the number of ions.
${{\text{K}}_{{\text{sp}}}}$$ = {\text{product of concentration of ions}}$
Complete step by step answer:
Given that the solubility ‘s’ of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ in water at ${25^ \circ }{\text{C}}$ is $1 \times {10^{ - 4}}$ mole/litre.
Let the solubility be‘s’ when ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$dissociates into following ions in water, then-
${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} \rightleftharpoons 2{\text{A}}{{\text{g}}^ + } + {\text{Co}}_{3 - }^2$ then its solubility product is given by-
${{\text{K}}_{{\text{sp}}}}$$ = {\text{product of concentration of ions}}$
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{A}}{{\text{g}}^ + }} \right]^2}\left[ {{\text{Co}}_{3 - }^2} \right]$
then on putting the values we get-
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{s}}} \right]^2}\left[ {\text{s}} \right] = 4{{\text{s}}^3}$ --- (i)
We have to find the solubility of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ solubility in $0.01{\text{M}}$ ${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$ solution.
Now let the solubility of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ in $0.01{\text{M}}$ ${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$ solution be ‘a’. Since there is no hydrolysis of${\text{Co}}_{3 - }^2$ ion so its concentration will be $0.01$.Now when ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$dissociates into following ions in${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$, then-
${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} \rightleftharpoons 2{\text{A}}{{\text{g}}^ + } + {\text{Co}}_{3 - }^2$ then its solubility product is given by-
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{A}}{{\text{g}}^ + }} \right]^2}\left[ {{\text{Co}}_{3 - }^2} \right]$
On putting the value of eq. (i), we get-
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{a}}} \right]^2}\left[ {0.01} \right] = 4{{\text{s}}^3}$
And we know that s =$1 \times {10^{ - 4}}$(given) , then putting the value of s in above equation we get-
$ \Rightarrow 4{{\text{a}}^2} \times {10^{ - 2}} = 4 \times {\left( {{{10}^{ - 4}}} \right)^3}$
On solving this equation, we get-
$
\Rightarrow 4{{\text{a}}^2} \times {10^{ - 2}} = 4 \times {10^{ - 12}} \\
\Rightarrow {{\text{a}}^2} = \dfrac{{{{10}^{ - 12}}}}{{{{10}^{ - 2}}}} \\
$
We know that $\dfrac{{{{\text{x}}^a}}}{{{{\text{x}}^b}}} = {{\text{x}}^{{\text{a - b}}}}$ so using this in the above equation, we get-
$ \Rightarrow {{\text{a}}^2} = {10^{ - 12 + 2}} = {10^{ - 10}}$
Now we will remove the square-root to get the value of a-
$ \Rightarrow {\text{a = }}\sqrt {{{10}^{ - 10}}} = \sqrt {{{10}^{ - 5}} \times {{10}^{ - 5}}} = {10^{ - 5}}$
Hence the solubility of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ in $0.01{\text{M}}$ ${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$ solution is ${10^{ - 5}}$ .
So the correct option is ‘C’.
Note:
There is a difference between solubility and solubility products. Solubility is the concentration of ions of solute in a solvent. Solubility product is the product of the solubility of the solute.
${{\text{K}}_{{\text{sp}}}}$$ = {\text{product of concentration of ions}}$
Complete step by step answer:
Given that the solubility ‘s’ of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ in water at ${25^ \circ }{\text{C}}$ is $1 \times {10^{ - 4}}$ mole/litre.
Let the solubility be‘s’ when ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$dissociates into following ions in water, then-
${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} \rightleftharpoons 2{\text{A}}{{\text{g}}^ + } + {\text{Co}}_{3 - }^2$ then its solubility product is given by-
${{\text{K}}_{{\text{sp}}}}$$ = {\text{product of concentration of ions}}$
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{A}}{{\text{g}}^ + }} \right]^2}\left[ {{\text{Co}}_{3 - }^2} \right]$
then on putting the values we get-
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{s}}} \right]^2}\left[ {\text{s}} \right] = 4{{\text{s}}^3}$ --- (i)
We have to find the solubility of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ solubility in $0.01{\text{M}}$ ${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$ solution.
Now let the solubility of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ in $0.01{\text{M}}$ ${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$ solution be ‘a’. Since there is no hydrolysis of${\text{Co}}_{3 - }^2$ ion so its concentration will be $0.01$.Now when ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$dissociates into following ions in${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$, then-
${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} \rightleftharpoons 2{\text{A}}{{\text{g}}^ + } + {\text{Co}}_{3 - }^2$ then its solubility product is given by-
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{A}}{{\text{g}}^ + }} \right]^2}\left[ {{\text{Co}}_{3 - }^2} \right]$
On putting the value of eq. (i), we get-
$ \Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{a}}} \right]^2}\left[ {0.01} \right] = 4{{\text{s}}^3}$
And we know that s =$1 \times {10^{ - 4}}$(given) , then putting the value of s in above equation we get-
$ \Rightarrow 4{{\text{a}}^2} \times {10^{ - 2}} = 4 \times {\left( {{{10}^{ - 4}}} \right)^3}$
On solving this equation, we get-
$
\Rightarrow 4{{\text{a}}^2} \times {10^{ - 2}} = 4 \times {10^{ - 12}} \\
\Rightarrow {{\text{a}}^2} = \dfrac{{{{10}^{ - 12}}}}{{{{10}^{ - 2}}}} \\
$
We know that $\dfrac{{{{\text{x}}^a}}}{{{{\text{x}}^b}}} = {{\text{x}}^{{\text{a - b}}}}$ so using this in the above equation, we get-
$ \Rightarrow {{\text{a}}^2} = {10^{ - 12 + 2}} = {10^{ - 10}}$
Now we will remove the square-root to get the value of a-
$ \Rightarrow {\text{a = }}\sqrt {{{10}^{ - 10}}} = \sqrt {{{10}^{ - 5}} \times {{10}^{ - 5}}} = {10^{ - 5}}$
Hence the solubility of ${\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}$ in $0.01{\text{M}}$ ${\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}$ solution is ${10^{ - 5}}$ .
So the correct option is ‘C’.
Note:
There is a difference between solubility and solubility products. Solubility is the concentration of ions of solute in a solvent. Solubility product is the product of the solubility of the solute.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

