
The smallest natural number is
[a] 0
[b] 1
[c] 2
[d] None of these
Answer
608.7k+ views
Hint: Recall the definition of natural number. List them and try finding which is the smallest natural number from the list. Finally claim that number is the smallest natural number.
Complete step-by-step answer:
Natural Number: Number 1,2,3,… are called natural numbers. They are also known as counting numbers as these numbers are used for counting.
As can be seen from the definition 1 is the smallest natural number.
Claim: 1 is the smallest natural number.
Proof: Suppose not
Let there exists another natural number $a$ such that $a<1$ and a is a natural number.
Also since natural numbers have at least 1 as the difference between them
Hence we have $1-a\ge 1$
Since every natural number is >0, we have
$a>0$
Hence we have $1\ge 1+a>1$
Hence 1>1, which is a contradiction. Hence 1 is the smallest natural number.
Hence option [b] is correct.
Note: [1] The number 1 is called the greatest lower bound of natural numbers. A number m is said to be the greatest lower bound of a set A if \[\forall a\in A,m\le a\] and $\forall c$ such that $c\le a\forall a\in A$ we have $m\ge c$.
[2] Real numbers have greatest lower bound property,i.e. if a set A which is a subset of R has a lower bound, then A has greatest lower bound also. The natural numbers have a lower bound 0. Hence according to this property they have the greatest lower bound also which is true since 1 is the greatest lower bound of natural numbers.
Complete step-by-step answer:
Natural Number: Number 1,2,3,… are called natural numbers. They are also known as counting numbers as these numbers are used for counting.
As can be seen from the definition 1 is the smallest natural number.
Claim: 1 is the smallest natural number.
Proof: Suppose not
Let there exists another natural number $a$ such that $a<1$ and a is a natural number.
Also since natural numbers have at least 1 as the difference between them
Hence we have $1-a\ge 1$
Since every natural number is >0, we have
$a>0$
Hence we have $1\ge 1+a>1$
Hence 1>1, which is a contradiction. Hence 1 is the smallest natural number.
Hence option [b] is correct.
Note: [1] The number 1 is called the greatest lower bound of natural numbers. A number m is said to be the greatest lower bound of a set A if \[\forall a\in A,m\le a\] and $\forall c$ such that $c\le a\forall a\in A$ we have $m\ge c$.
[2] Real numbers have greatest lower bound property,i.e. if a set A which is a subset of R has a lower bound, then A has greatest lower bound also. The natural numbers have a lower bound 0. Hence according to this property they have the greatest lower bound also which is true since 1 is the greatest lower bound of natural numbers.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
XIX+XXX A 49 B 51 C 55 D 44 class 5 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Which are the Top 10 Largest Countries of the World?

The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

