
The sides of a triangle are $3cm$, $5cm$ and $4cm$. Its area is:
A). $6c{m^2}$
B). $7.5c{m^2}$
C). $5\sqrt 2 c{m^2}$
D). None of these
Answer
485.1k+ views
Hint: We are given that the lengths of the three sides of a triangle are $3cm$, $5cm$ and $4cm$. So, for finding the area of the triangle we will use Heron’s formula. According to Heron’s formula area of a triangle whose sides are of length $a$, $b$ and $c$ units is given as: $Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $ , here $'s'$ is the semi-perimeter of the triangle as $s = \dfrac{{a + b + c}}{2}$ .
Formula: $Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $ and $s = \dfrac{{a + b + c}}{2}$
Complete step-by-step solution:
Given: lengths of a triangle are $3cm$, $5cm$ and $4cm$.
Let $a = 3cm$, $b = 5cm$ and $c = 4cm$.
So, the perimeter of the triangle will be:
$s = \dfrac{{3 + 5 + 4}}{2}cm$
$ \Rightarrow s = \dfrac{{12}}{2}cm$
$ \Rightarrow s = 6cm$
As we know area of a triangle whose lengths of all three sides are known is given as:
$Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} .......\left( i \right)$
We have,
$s = 6cm$, $a = 3cm$, $b = 5cm$ and $c = 4cm$.
Substitute all the values in equation $\left( i \right)$
$Area = \sqrt {6\left( {6 - 3} \right)\left( {6 - 5} \right)\left( {6 - 4} \right)} c{m^2}$
After subtraction, we get
$ \Rightarrow Area = \sqrt {6\left( 3 \right)\left( 1 \right)\left( 2 \right)} c{m^2}$
$ \Rightarrow Area = \sqrt {6 \times 3 \times 1 \times 2} c{m^2}$
After multiplication, we get
$ \Rightarrow Area = \sqrt {36} c{m^2}$
The square root of a number can be both positive and negative. But here we have to find an area so we will write only the positive value of square root because the area can’t be negative.
$ \Rightarrow Area = 6c{m^2}$
So, the area of the triangle is $6c{m^2}$.
Hence, option (A) is the correct answer.
Note: Here, by the word semi-perimeter we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter by $2$. Students should be careful about the unit. In the given question units are the same but they can be different in any other question. Calculations should be done in the same unit. Write area only in positive value because area can’t be negative as it is the region occupied inside the boundary.
Formula: $Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $ and $s = \dfrac{{a + b + c}}{2}$
Complete step-by-step solution:
Given: lengths of a triangle are $3cm$, $5cm$ and $4cm$.
Let $a = 3cm$, $b = 5cm$ and $c = 4cm$.
So, the perimeter of the triangle will be:
$s = \dfrac{{3 + 5 + 4}}{2}cm$
$ \Rightarrow s = \dfrac{{12}}{2}cm$
$ \Rightarrow s = 6cm$
As we know area of a triangle whose lengths of all three sides are known is given as:
$Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} .......\left( i \right)$
We have,
$s = 6cm$, $a = 3cm$, $b = 5cm$ and $c = 4cm$.
Substitute all the values in equation $\left( i \right)$
$Area = \sqrt {6\left( {6 - 3} \right)\left( {6 - 5} \right)\left( {6 - 4} \right)} c{m^2}$
After subtraction, we get
$ \Rightarrow Area = \sqrt {6\left( 3 \right)\left( 1 \right)\left( 2 \right)} c{m^2}$
$ \Rightarrow Area = \sqrt {6 \times 3 \times 1 \times 2} c{m^2}$
After multiplication, we get
$ \Rightarrow Area = \sqrt {36} c{m^2}$
The square root of a number can be both positive and negative. But here we have to find an area so we will write only the positive value of square root because the area can’t be negative.
$ \Rightarrow Area = 6c{m^2}$
So, the area of the triangle is $6c{m^2}$.
Hence, option (A) is the correct answer.
Note: Here, by the word semi-perimeter we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter by $2$. Students should be careful about the unit. In the given question units are the same but they can be different in any other question. Calculations should be done in the same unit. Write area only in positive value because area can’t be negative as it is the region occupied inside the boundary.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

