
The sides a, b, c (taken in order) of a triangle $ \Delta ABC $ are in A.P. If $ \cos \alpha =\dfrac{a}{b+c} $ , $ \cos \beta =\dfrac{b}{c+a} $ , $ \cos \gamma =\dfrac{c}{a+b} $ , then $ {{\tan }^{2}}\dfrac{\alpha }{2}+{{\tan }^{2}}\dfrac{\gamma }{2} $ is equal to:
[Note: All symbols used have usual meanings in triangle ABC.]
A. 1
B. $ \dfrac{1}{2} $
C. $ \dfrac{1}{3} $
D. $ \dfrac{2}{3} $
Answer
548.4k+ views
Hint: Arithmetic Progression (A.P.): The series of numbers where the difference of any two consecutive terms is the same, is called an Arithmetic Progression.
If three numbers a, b and c are in A.P., then:
$ b-a=c-b $
⇒ $ 2b=a+c $
Use the fact that a, b, and c are in A.P. to eliminate one of these variables in the other expressions.
Use the identity $ \cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } $ to find the values of $ {{\tan }^{2}}\dfrac{\alpha }{2} $ and $ {{\tan }^{2}}\dfrac{\gamma }{2} $ from the given expressions of $ \cos \alpha $ and $ \cos \gamma $ .
Use componendo-dividendo: If $ \dfrac{a+b}{a-b}=\dfrac{x}{y} $ , then $ \dfrac{a}{b}=\dfrac{x+y}{x-y} $ .
Complete step-by-step answer:
Since a, b and c are in A.P., we have $ 2b=a+c $ and $ c=2b-a $ .
It is given that $ \cos \alpha =\dfrac{a}{b+c} $ .
Using the half-angle formula $ \cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } $ and the given fact that $ c=2b-a $ , we get:
⇒ $ \dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}}=\dfrac{a}{3b-a} $
Using componendo-dividendo, we get:
⇒ $ \dfrac{2{{\tan }^{2}}\dfrac{\alpha }{2}}{2}=\dfrac{(3b-a)-a}{(3b-a)+a} $
⇒ $ {{\tan }^{2}}\dfrac{\alpha }{2}=\dfrac{3b-2a}{3b} $ ... (1)
Also, given that $ \cos \gamma =\dfrac{c}{a+b} $ .
⇒ $ \dfrac{1-{{\tan }^{2}}\dfrac{\gamma }{2}}{1+{{\tan }^{2}}\dfrac{\gamma }{2}}=\dfrac{2b-a}{a+b} $
Using componendo-dividendo, we get:
⇒ $ \dfrac{2{{\tan }^{2}}\tfrac{\gamma }{2}}{2}=\dfrac{(a+b)-(2b-a)}{(a+b)+(2b-a)} $
⇒ $ {{\tan }^{2}}\dfrac{\gamma }{2}=\dfrac{2a-b}{3b} $ ... (2)
Now, $ {{\tan }^{2}}\dfrac{\alpha }{2}+{{\tan }^{2}}\dfrac{\gamma }{2} $
= $ \dfrac{3b-2a}{3b}+\dfrac{2a-b}{3b} $ ... [Using (1) and (2)]
= $ \dfrac{2b}{3b} $
= $ \dfrac{2}{3} $
So, the correct answer is “Option D”.
Note: Tangent half-angle formula:
$ \sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta } $
$ \cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } $
$ \tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } $
In any triangle $ \Delta ABC $ , the convention is to name $ \angle A=\alpha $ , $ \angle B=\beta $ and $ \angle C=\gamma $ . The sides opposite to these angles are named a, b and c respectively.
If three numbers a, b and c are in A.P., then:
$ b-a=c-b $
⇒ $ 2b=a+c $
Use the fact that a, b, and c are in A.P. to eliminate one of these variables in the other expressions.
Use the identity $ \cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } $ to find the values of $ {{\tan }^{2}}\dfrac{\alpha }{2} $ and $ {{\tan }^{2}}\dfrac{\gamma }{2} $ from the given expressions of $ \cos \alpha $ and $ \cos \gamma $ .
Use componendo-dividendo: If $ \dfrac{a+b}{a-b}=\dfrac{x}{y} $ , then $ \dfrac{a}{b}=\dfrac{x+y}{x-y} $ .
Complete step-by-step answer:
Since a, b and c are in A.P., we have $ 2b=a+c $ and $ c=2b-a $ .
It is given that $ \cos \alpha =\dfrac{a}{b+c} $ .
Using the half-angle formula $ \cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } $ and the given fact that $ c=2b-a $ , we get:
⇒ $ \dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}}=\dfrac{a}{3b-a} $
Using componendo-dividendo, we get:
⇒ $ \dfrac{2{{\tan }^{2}}\dfrac{\alpha }{2}}{2}=\dfrac{(3b-a)-a}{(3b-a)+a} $
⇒ $ {{\tan }^{2}}\dfrac{\alpha }{2}=\dfrac{3b-2a}{3b} $ ... (1)
Also, given that $ \cos \gamma =\dfrac{c}{a+b} $ .
⇒ $ \dfrac{1-{{\tan }^{2}}\dfrac{\gamma }{2}}{1+{{\tan }^{2}}\dfrac{\gamma }{2}}=\dfrac{2b-a}{a+b} $
Using componendo-dividendo, we get:
⇒ $ \dfrac{2{{\tan }^{2}}\tfrac{\gamma }{2}}{2}=\dfrac{(a+b)-(2b-a)}{(a+b)+(2b-a)} $
⇒ $ {{\tan }^{2}}\dfrac{\gamma }{2}=\dfrac{2a-b}{3b} $ ... (2)
Now, $ {{\tan }^{2}}\dfrac{\alpha }{2}+{{\tan }^{2}}\dfrac{\gamma }{2} $
= $ \dfrac{3b-2a}{3b}+\dfrac{2a-b}{3b} $ ... [Using (1) and (2)]
= $ \dfrac{2b}{3b} $
= $ \dfrac{2}{3} $
So, the correct answer is “Option D”.
Note: Tangent half-angle formula:
$ \sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta } $
$ \cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } $
$ \tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } $
In any triangle $ \Delta ABC $ , the convention is to name $ \angle A=\alpha $ , $ \angle B=\beta $ and $ \angle C=\gamma $ . The sides opposite to these angles are named a, b and c respectively.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

