
The shortest distance between the lines $ \dfrac{{x - 3}}{3} = \dfrac{{y - 8}}{{ - 1}} = \dfrac{{z - 3}}{1} $ and $ \dfrac{{x + 3}}{{ - 3}} = \dfrac{{y + 7}}{2} = \dfrac{{z - 6}}{4} $
A. $ \sqrt {30} $
B. $ 2\sqrt {30} $
C. $ 5\sqrt {30} $
D. $ 3\sqrt {30} $
Answer
527.4k+ views
Hint: We are provided with two equations and we have to find the shortest distance between these lines. The formula for the shortest distance between any two lines is
\[\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} }}\]
Firstly calculate the numerator value and then denominator and divide the two values.
Complete step by step solution:
The general equations are of the form $ \dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}} $ and $ \dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}} $
Compare the terms with the given equations which are $ \dfrac{{x - 3}}{3} = \dfrac{{y - 8}}{{ - 1}} = \dfrac{{z - 3}}{1} $ and $ \dfrac{{x + 3}}{{ - 3}} = \dfrac{{y + 7}}{2} = \dfrac{{z - 6}}{4} $
So, the terms become
$
{x_1} = 3,{y_1} = 8,{z_1} = 3 \\
{a_1} = 3,{b_1} = - 1,{c_1} = 1 \\
$ and $
{x_2} = - 3,{y_2} = - 7,{z_2} = 6 \\
{a_2} = - 3,{b_2} = 2,{c_2} = 4 \\
$
Calculating the numerator of the formula of the shortest distance
\[\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|\]
Substituting the values
\[\left| {\begin{array}{*{20}{c}}
{ - 3 - 3}&{ - 7 - 8}&{6 - 3} \\
3&{ - 1}&1 \\
{ - 3}&2&4
\end{array}} \right|\]
Calculating the determinant
$
= - 6\left( { - 4 - 2} \right) + 15\left( {12 + 3} \right) + 3\left( {6 - 3} \right) \\
= - 6\left( { - 6} \right) + 15\left( {15} \right) + 3\left( 3 \right) \\
= 36 + 225 + 9 \\
= 270 \;
$
Now, calculating the denominator for the formula
$ \sqrt {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} $
$
= \sqrt {{{\left( {3.2 - \left( { - 3} \right)\left( { - 1} \right)} \right)}^2} + {{\left[ {\left( { - 1} \right)4 - 2.1} \right]}^2} - {{\left[ {1\left( { - 3} \right) - 4.3} \right]}^2}} \\
= \sqrt {{{\left( {6 - 3} \right)}^2} + {{\left( { - 4 - 2} \right)}^2} + {{\left( { - 3 - 12} \right)}^2}} \\
= \sqrt {9 + 36 + 225} \\
= \sqrt {270} \;
$
The formula for calculating the shortest distance is
\[\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} }}\]
Substituting the values
$ = \dfrac{{270}}{{\sqrt {270} }} = \sqrt {270} $ $ = 3\sqrt {30} $
Hence, the shortest distance between the two given lines is d $ = 3\sqrt {30} $
So, the correct answer is “Option D”.
Note: Learn the formula for the shortest distance between the two lines carefully. For our convenience calculate the numerator first and then calculate the denominator and divide the two values. Do the calculations carefully.
\[\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} }}\]
Firstly calculate the numerator value and then denominator and divide the two values.
Complete step by step solution:
The general equations are of the form $ \dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}} $ and $ \dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}} $
Compare the terms with the given equations which are $ \dfrac{{x - 3}}{3} = \dfrac{{y - 8}}{{ - 1}} = \dfrac{{z - 3}}{1} $ and $ \dfrac{{x + 3}}{{ - 3}} = \dfrac{{y + 7}}{2} = \dfrac{{z - 6}}{4} $
So, the terms become
$
{x_1} = 3,{y_1} = 8,{z_1} = 3 \\
{a_1} = 3,{b_1} = - 1,{c_1} = 1 \\
$ and $
{x_2} = - 3,{y_2} = - 7,{z_2} = 6 \\
{a_2} = - 3,{b_2} = 2,{c_2} = 4 \\
$
Calculating the numerator of the formula of the shortest distance
\[\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|\]
Substituting the values
\[\left| {\begin{array}{*{20}{c}}
{ - 3 - 3}&{ - 7 - 8}&{6 - 3} \\
3&{ - 1}&1 \\
{ - 3}&2&4
\end{array}} \right|\]
Calculating the determinant
$
= - 6\left( { - 4 - 2} \right) + 15\left( {12 + 3} \right) + 3\left( {6 - 3} \right) \\
= - 6\left( { - 6} \right) + 15\left( {15} \right) + 3\left( 3 \right) \\
= 36 + 225 + 9 \\
= 270 \;
$
Now, calculating the denominator for the formula
$ \sqrt {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} $
$
= \sqrt {{{\left( {3.2 - \left( { - 3} \right)\left( { - 1} \right)} \right)}^2} + {{\left[ {\left( { - 1} \right)4 - 2.1} \right]}^2} - {{\left[ {1\left( { - 3} \right) - 4.3} \right]}^2}} \\
= \sqrt {{{\left( {6 - 3} \right)}^2} + {{\left( { - 4 - 2} \right)}^2} + {{\left( { - 3 - 12} \right)}^2}} \\
= \sqrt {9 + 36 + 225} \\
= \sqrt {270} \;
$
The formula for calculating the shortest distance is
\[\dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} }}\]
Substituting the values
$ = \dfrac{{270}}{{\sqrt {270} }} = \sqrt {270} $ $ = 3\sqrt {30} $
Hence, the shortest distance between the two given lines is d $ = 3\sqrt {30} $
So, the correct answer is “Option D”.
Note: Learn the formula for the shortest distance between the two lines carefully. For our convenience calculate the numerator first and then calculate the denominator and divide the two values. Do the calculations carefully.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

