
The set of values of c for which ${{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}}$ is of the form ${\left( {{\text{x}} - {{\alpha }}} \right)^2}\left( {{\text{x}} - {{\beta }}} \right),\;\left[ {{{\alpha }},\;{{\beta }} \in {\text{R}}} \right]$ is given by-
A. {0}
B. {4}
C. {0, 4}
D. Null set
Answer
604.8k+ views
Hint: A cubic equation is the one whose degree is 3, that is the highest power of x is 3. They have at most three roots and can have a lesser number of roots as well. Here, we have been given the form of the given expression, so we just need to equate these two equations and compare them term by term to get the value(s) of c. Some formulas to be used are-
${\left( {{\text{a}} \pm {\text{b}}} \right)^2} = {{\text{a}}^2} \pm 2ab + {{\text{b}}^2}$...(1)
Complete step-by-step solution -
We have to obtain the value of c from ${{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}}$ such that it has to be of the form ${\left( {{\text{x}} - {{\alpha }}} \right)^2}\left( {{\text{x}} - {{\beta }}} \right),\;\left[ {{{\alpha }},\;{{\beta }} \in {\text{R}}} \right]$. So we will equate the two expressions as-
${{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = {\left( {{\text{x}} - {{\alpha }}} \right)^2}\left( {{\text{x}} - {{\beta }}} \right)$
Using property (1) we can expand as-
$\begin{align}
&{{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = \left( {{{\text{x}}^2} - 2\alpha x + {{{\alpha }}^2}} \right)\left( {{\text{x}} - {{\beta }}} \right) \\
&{{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = {{\text{x}}^3} - \beta {x^2} - 2\alpha {x^2} + 2\alpha \beta x + {{{\alpha }}^2}{\text{x}} - {\alpha ^2}\beta \\
&{{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = {{\text{x}}^3} - \left( {{{\beta }} + 2{{\alpha }}} \right){{\text{x}}^2} + \left( {{{{\alpha }}^2} + 2\alpha \beta } \right){\text{x}} - {\alpha ^2}\beta \\
\end{align} $
We will now compare the coefficients for each of the degrees of x as-
$\begin{align}
& - 6 = - \left( {{{\beta }} + 2{{\alpha }}} \right) \\
&2{{\alpha }} + {{\beta }} = 6...\left( 2 \right) \\
&9 = {{{\alpha }}^2} + 2\alpha \beta \\
&{{{\alpha }}^2} + 2\alpha \beta = 9...\left( 3 \right) \\
&- {\text{c}} = - {\alpha ^2}\beta ...\left( 4 \right) \\
\end{align} $
We will first solve equations (2) and (3) as-
$\begin{align}
&{{\beta }} = 6 - 2{{\alpha }} \\
&{{{\alpha }}^2} + 2\alpha \beta = 9 \\
& Subsituting\;the\;value\;of\;{{\beta }}, \\
&{{{\alpha }}^2} + 2{{\alpha }}\left( {6 - 2{{\alpha }}} \right) = 9 \\
&{{{\alpha }}^2} + 12{{\alpha }} - 4{{{\alpha }}^2} = 9 \\
&- 3{{{\alpha }}^2} + 12{{\alpha }} - 9 = 0 \\
&{{{\alpha }}^2} - 4{{\alpha }} + 3 = 0 \\
&{{{\alpha }}^2} - 3{{\alpha }} - {{\alpha }} + 3 = 0 \\
&{{\alpha }}\left( {{{\alpha }} - 3} \right) - 1\left( {{{\alpha }} - 3} \right) = 0 \\
&\left( {{{\alpha }} - 3} \right)\left( {{{\alpha }} - 1} \right) = 0 \\
&{{\alpha }} = 1,\;3 \\
\end{align} $
Subsequently, we get the values of as-
$\begin{align}
&{{\beta }} = 6 - 2{{\alpha }} \\
&{{\beta }} = 6 - 2\left( 3 \right),\;6 - 2\left( 1 \right) \\
&{{\beta }} = 0,4 \\
\end{align} $
Using equation (4),
$\begin{align}
&{\text{c}} = {{{\alpha }}^2}{{\beta }} \\
&{\text{c}} = {3^2}\left( 0 \right)\;or\;{\text{c}} = {\left( 1 \right)^2} \times 4 \\
&{\text{c}} = 0\;or\;4 \\
\end{align} $
Hence the set of values of c is {0, 4}. The correct option is C.
Note: In such types of questions involving quadratic, cubic or higher equations, more than one value may be possible, so we should keep in mind that we use all the possible values. Students often use and write only one of the values, which leads to an incorrect answer. Also, we should remember the basic algebraic formulas to solve these problems.
${\left( {{\text{a}} \pm {\text{b}}} \right)^2} = {{\text{a}}^2} \pm 2ab + {{\text{b}}^2}$...(1)
Complete step-by-step solution -
We have to obtain the value of c from ${{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}}$ such that it has to be of the form ${\left( {{\text{x}} - {{\alpha }}} \right)^2}\left( {{\text{x}} - {{\beta }}} \right),\;\left[ {{{\alpha }},\;{{\beta }} \in {\text{R}}} \right]$. So we will equate the two expressions as-
${{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = {\left( {{\text{x}} - {{\alpha }}} \right)^2}\left( {{\text{x}} - {{\beta }}} \right)$
Using property (1) we can expand as-
$\begin{align}
&{{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = \left( {{{\text{x}}^2} - 2\alpha x + {{{\alpha }}^2}} \right)\left( {{\text{x}} - {{\beta }}} \right) \\
&{{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = {{\text{x}}^3} - \beta {x^2} - 2\alpha {x^2} + 2\alpha \beta x + {{{\alpha }}^2}{\text{x}} - {\alpha ^2}\beta \\
&{{\text{x}}^3} - 6{{\text{x}}^2} + 9{\text{x}} - {\text{c}} = {{\text{x}}^3} - \left( {{{\beta }} + 2{{\alpha }}} \right){{\text{x}}^2} + \left( {{{{\alpha }}^2} + 2\alpha \beta } \right){\text{x}} - {\alpha ^2}\beta \\
\end{align} $
We will now compare the coefficients for each of the degrees of x as-
$\begin{align}
& - 6 = - \left( {{{\beta }} + 2{{\alpha }}} \right) \\
&2{{\alpha }} + {{\beta }} = 6...\left( 2 \right) \\
&9 = {{{\alpha }}^2} + 2\alpha \beta \\
&{{{\alpha }}^2} + 2\alpha \beta = 9...\left( 3 \right) \\
&- {\text{c}} = - {\alpha ^2}\beta ...\left( 4 \right) \\
\end{align} $
We will first solve equations (2) and (3) as-
$\begin{align}
&{{\beta }} = 6 - 2{{\alpha }} \\
&{{{\alpha }}^2} + 2\alpha \beta = 9 \\
& Subsituting\;the\;value\;of\;{{\beta }}, \\
&{{{\alpha }}^2} + 2{{\alpha }}\left( {6 - 2{{\alpha }}} \right) = 9 \\
&{{{\alpha }}^2} + 12{{\alpha }} - 4{{{\alpha }}^2} = 9 \\
&- 3{{{\alpha }}^2} + 12{{\alpha }} - 9 = 0 \\
&{{{\alpha }}^2} - 4{{\alpha }} + 3 = 0 \\
&{{{\alpha }}^2} - 3{{\alpha }} - {{\alpha }} + 3 = 0 \\
&{{\alpha }}\left( {{{\alpha }} - 3} \right) - 1\left( {{{\alpha }} - 3} \right) = 0 \\
&\left( {{{\alpha }} - 3} \right)\left( {{{\alpha }} - 1} \right) = 0 \\
&{{\alpha }} = 1,\;3 \\
\end{align} $
Subsequently, we get the values of as-
$\begin{align}
&{{\beta }} = 6 - 2{{\alpha }} \\
&{{\beta }} = 6 - 2\left( 3 \right),\;6 - 2\left( 1 \right) \\
&{{\beta }} = 0,4 \\
\end{align} $
Using equation (4),
$\begin{align}
&{\text{c}} = {{{\alpha }}^2}{{\beta }} \\
&{\text{c}} = {3^2}\left( 0 \right)\;or\;{\text{c}} = {\left( 1 \right)^2} \times 4 \\
&{\text{c}} = 0\;or\;4 \\
\end{align} $
Hence the set of values of c is {0, 4}. The correct option is C.
Note: In such types of questions involving quadratic, cubic or higher equations, more than one value may be possible, so we should keep in mind that we use all the possible values. Students often use and write only one of the values, which leads to an incorrect answer. Also, we should remember the basic algebraic formulas to solve these problems.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

