
The semi-vertical angle of a cone is \[{45^\circ}\]. If the height of the cone is 20.025, then its approximate lateral surface area is
A. \[401\sqrt 2 \pi \]
B. \[400\sqrt 2 \pi \]
C. \[399\sqrt 2 \pi \]
D. None of these
Answer
599.4k+ views
Hint: First of all, find the slant height of the cone and relation between radius and height of the cone by the given semi-vertical angle. Now, the approximate lateral surface area of the cone is given by \[S + \Delta S\] where \[S\] is the LSA of the cone. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let \[r\] be the radius, \[h\] be the height and \[l\] be the slant height of a cone of semi-vertical angle \[{45^\circ}\].
From the figure,
\[
\Rightarrow \tan {45^\circ} = \dfrac{r}{h} \\
\Rightarrow 1 = \dfrac{r}{h} \\
\therefore r = h \\
\]
We know that \[l = \sqrt {{r^2} + {h^2}} \].
So, slant height of the given cone is
\[
\Rightarrow l = \sqrt {{r^2} + {h^2}} \\
\Rightarrow l = \sqrt {{h^2} + {h^2}} = \sqrt {2{h^2}} {\text{ }}\left[ {\because r = h} \right] \\
\therefore l = \sqrt 2 h \\
\]
Let \[h = 20\] and \[h + \Delta h = 20.0025\]
So, \[\Delta h = 20.025 - 20 = 0.025\]
We know that the lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
So, the lateral surface area of the given cone is
$\Rightarrow$ \[S = \pi h\sqrt 2 h = \sqrt 2 \pi {h^2}{\text{ }}\left[ {\because r = h{\text{ and }}l = \sqrt 2 h} \right]\]
The approximate lateral surface area of the cone is given by \[S + \Delta S\].
Now, consider \[\Delta S\]
\[
\Rightarrow \Delta S = {\left( {\dfrac{{ds}}{{dh}}} \right)_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {\dfrac{d}{{dh}}\left( {\sqrt 2 \pi {h^2}} \right)} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {2\sqrt 2 \pi h} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = \left[ {40\sqrt 2 \pi } \right] \times 0.025{\text{ }}\left[ {\because \Delta h = 0.025} \right] \\
\therefore \Delta S = \sqrt 2 \pi \\
\]
And
\[
\Rightarrow S = \sqrt 2 \pi {h^2} \\
\Rightarrow S = \sqrt 2 \pi {\left( {20} \right)^2}{\text{ }}\left[ {\because h = 20} \right] \\
\therefore S = 400\sqrt 2 \pi \\
\]
Hence the approximate value of lateral surface area of the cone is
\[S + \Delta S = 400\sqrt 2 \pi + \sqrt 2 \pi = 401\sqrt 2 \pi \]
Thus, the correct option is A. \[401\sqrt 2 \pi \]
Note: The semi-vertical angle of the cone is the angle between the height and slant height of the cone. The slant height of the cone of radius \[r\] and height \[h\] is given by \[l = \sqrt {{r^2} + {h^2}} \]. The lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
Complete step-by-step answer:
Let \[r\] be the radius, \[h\] be the height and \[l\] be the slant height of a cone of semi-vertical angle \[{45^\circ}\].
From the figure,
\[
\Rightarrow \tan {45^\circ} = \dfrac{r}{h} \\
\Rightarrow 1 = \dfrac{r}{h} \\
\therefore r = h \\
\]
We know that \[l = \sqrt {{r^2} + {h^2}} \].
So, slant height of the given cone is
\[
\Rightarrow l = \sqrt {{r^2} + {h^2}} \\
\Rightarrow l = \sqrt {{h^2} + {h^2}} = \sqrt {2{h^2}} {\text{ }}\left[ {\because r = h} \right] \\
\therefore l = \sqrt 2 h \\
\]
Let \[h = 20\] and \[h + \Delta h = 20.0025\]
So, \[\Delta h = 20.025 - 20 = 0.025\]
We know that the lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
So, the lateral surface area of the given cone is
$\Rightarrow$ \[S = \pi h\sqrt 2 h = \sqrt 2 \pi {h^2}{\text{ }}\left[ {\because r = h{\text{ and }}l = \sqrt 2 h} \right]\]
The approximate lateral surface area of the cone is given by \[S + \Delta S\].
Now, consider \[\Delta S\]
\[
\Rightarrow \Delta S = {\left( {\dfrac{{ds}}{{dh}}} \right)_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {\dfrac{d}{{dh}}\left( {\sqrt 2 \pi {h^2}} \right)} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {2\sqrt 2 \pi h} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = \left[ {40\sqrt 2 \pi } \right] \times 0.025{\text{ }}\left[ {\because \Delta h = 0.025} \right] \\
\therefore \Delta S = \sqrt 2 \pi \\
\]
And
\[
\Rightarrow S = \sqrt 2 \pi {h^2} \\
\Rightarrow S = \sqrt 2 \pi {\left( {20} \right)^2}{\text{ }}\left[ {\because h = 20} \right] \\
\therefore S = 400\sqrt 2 \pi \\
\]
Hence the approximate value of lateral surface area of the cone is
\[S + \Delta S = 400\sqrt 2 \pi + \sqrt 2 \pi = 401\sqrt 2 \pi \]
Thus, the correct option is A. \[401\sqrt 2 \pi \]
Note: The semi-vertical angle of the cone is the angle between the height and slant height of the cone. The slant height of the cone of radius \[r\] and height \[h\] is given by \[l = \sqrt {{r^2} + {h^2}} \]. The lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

