
The second order derivative of $a{\sin ^3}t$ with respect to $a{\cos ^3}t$ at $t = \dfrac{\pi }{4}$ is?
A)$2$
B)$\dfrac{1}{{12a}}$
C)$\dfrac{{4\sqrt 2 }}{{3a}}$
D)$\dfrac{{3a}}{{4\sqrt 2 }}$
Answer
565.2k+ views
Hint: Here we are asked to find the second derivative of a function with respect to another function. Since both the functions are dependent on $t$, we can find derivatives of them with respect to $t$. Then dividing we get the first derivative in the question. Again by differentiating and substituting the value for $t$, we get the required second derivative.
Useful formula:
For functions $x,y$ and some parameter $t$,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Also, for any $x,t$ and $u$ as a function of $x$,we have
$\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$, where $n$ is any number.
$\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$
$\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$
Also, we have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
$\sec t = \dfrac{1}{{\cos t}}$
Complete step-by-step answer:
To find the second order derivative of $a{\sin ^3}t$ with respect to $a{\cos ^3}t$,
Let $y = a{\sin ^3}t$, $x = a{\cos ^3}t$
So, we have to find $\dfrac{{{d^2}y}}{{d{x^2}}}$.
We have $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Consider $y = a{\sin ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dy}}{{dt}} = a \times 3{\sin ^2}t \times \dfrac{{d(\sin t)}}{{dt}}$$\sec t = \dfrac{1}{{\cos t}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$ \Rightarrow \dfrac{{dy}}{{dt}} = 3a{\sin ^2}t\cos t - - - (i)$
Now consider $x = a{\cos ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dx}}{{dt}} = a \times 3{\cos ^2}t \times \dfrac{{d(\cos t)}}{{dt}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = 3a{\cos ^2}t \times - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t - - - (ii)$
Now we have, $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substituting using $(i)\& (ii)$ we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}t\cos t}}{{ - 3a{{\cos }^2}t\sin t}}$
Simplifying we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin t}}{{\cos t}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - {\text{tan t}}$
Again differentiating both sides with respect to $t$ we get,
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {\sec ^2}t \times \dfrac{{dt}}{{dx}}$ (since $\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$)
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{\dfrac{{dx}}{{dt}}}}$
Substituting for $\dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t$ we get,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{ - 3a{{\cos }^2}t\sin t}}$
Since $\sec t = \dfrac{1}{{\cos t}}$, squaring both sides we have, ${\sec ^2}t = \dfrac{1}{{{{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^2}t\sin t \times {{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^4}t\sin t}}$
We need to find $\dfrac{{{d^2}y}}{{d{x^2}}}$ at $t = \dfrac{\pi }{4}$.
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\cos }^4}\dfrac{\pi }{4}\sin \dfrac{\pi }{4}}}$
We have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Substituting we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^4}\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}$
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a\dfrac{1}{4} \times \dfrac{1}{{\sqrt 2 }}}}$
Simplifying we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{{4\sqrt 2 }}{{3a}}$
$\therefore $ The answer is option C.
Note: We could use the above method here because both the given functions were dependent on a common variable. Otherwise taking derivatives about a function is a tedious task. The value of $t$ must be substituted after finding the second derivative. It is wrong if we substitute it in the first derivative itself and then differentiating the second time.
Useful formula:
For functions $x,y$ and some parameter $t$,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Also, for any $x,t$ and $u$ as a function of $x$,we have
$\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$, where $n$ is any number.
$\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$
$\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$
Also, we have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
$\sec t = \dfrac{1}{{\cos t}}$
Complete step-by-step answer:
To find the second order derivative of $a{\sin ^3}t$ with respect to $a{\cos ^3}t$,
Let $y = a{\sin ^3}t$, $x = a{\cos ^3}t$
So, we have to find $\dfrac{{{d^2}y}}{{d{x^2}}}$.
We have $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Consider $y = a{\sin ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dy}}{{dt}} = a \times 3{\sin ^2}t \times \dfrac{{d(\sin t)}}{{dt}}$$\sec t = \dfrac{1}{{\cos t}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$ \Rightarrow \dfrac{{dy}}{{dt}} = 3a{\sin ^2}t\cos t - - - (i)$
Now consider $x = a{\cos ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dx}}{{dt}} = a \times 3{\cos ^2}t \times \dfrac{{d(\cos t)}}{{dt}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = 3a{\cos ^2}t \times - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t - - - (ii)$
Now we have, $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substituting using $(i)\& (ii)$ we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}t\cos t}}{{ - 3a{{\cos }^2}t\sin t}}$
Simplifying we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin t}}{{\cos t}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - {\text{tan t}}$
Again differentiating both sides with respect to $t$ we get,
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {\sec ^2}t \times \dfrac{{dt}}{{dx}}$ (since $\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$)
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{\dfrac{{dx}}{{dt}}}}$
Substituting for $\dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t$ we get,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{ - 3a{{\cos }^2}t\sin t}}$
Since $\sec t = \dfrac{1}{{\cos t}}$, squaring both sides we have, ${\sec ^2}t = \dfrac{1}{{{{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^2}t\sin t \times {{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^4}t\sin t}}$
We need to find $\dfrac{{{d^2}y}}{{d{x^2}}}$ at $t = \dfrac{\pi }{4}$.
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\cos }^4}\dfrac{\pi }{4}\sin \dfrac{\pi }{4}}}$
We have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Substituting we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^4}\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}$
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a\dfrac{1}{4} \times \dfrac{1}{{\sqrt 2 }}}}$
Simplifying we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{{4\sqrt 2 }}{{3a}}$
$\therefore $ The answer is option C.
Note: We could use the above method here because both the given functions were dependent on a common variable. Otherwise taking derivatives about a function is a tedious task. The value of $t$ must be substituted after finding the second derivative. It is wrong if we substitute it in the first derivative itself and then differentiating the second time.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

