
The second order derivative of $a{\sin ^3}t$ with respect to $a{\cos ^3}t$ at $t = \dfrac{\pi }{4}$ is?
A)$2$
B)$\dfrac{1}{{12a}}$
C)$\dfrac{{4\sqrt 2 }}{{3a}}$
D)$\dfrac{{3a}}{{4\sqrt 2 }}$
Answer
579.3k+ views
Hint: Here we are asked to find the second derivative of a function with respect to another function. Since both the functions are dependent on $t$, we can find derivatives of them with respect to $t$. Then dividing we get the first derivative in the question. Again by differentiating and substituting the value for $t$, we get the required second derivative.
Useful formula:
For functions $x,y$ and some parameter $t$,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Also, for any $x,t$ and $u$ as a function of $x$,we have
$\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$, where $n$ is any number.
$\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$
$\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$
Also, we have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
$\sec t = \dfrac{1}{{\cos t}}$
Complete step-by-step answer:
To find the second order derivative of $a{\sin ^3}t$ with respect to $a{\cos ^3}t$,
Let $y = a{\sin ^3}t$, $x = a{\cos ^3}t$
So, we have to find $\dfrac{{{d^2}y}}{{d{x^2}}}$.
We have $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Consider $y = a{\sin ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dy}}{{dt}} = a \times 3{\sin ^2}t \times \dfrac{{d(\sin t)}}{{dt}}$$\sec t = \dfrac{1}{{\cos t}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$ \Rightarrow \dfrac{{dy}}{{dt}} = 3a{\sin ^2}t\cos t - - - (i)$
Now consider $x = a{\cos ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dx}}{{dt}} = a \times 3{\cos ^2}t \times \dfrac{{d(\cos t)}}{{dt}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = 3a{\cos ^2}t \times - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t - - - (ii)$
Now we have, $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substituting using $(i)\& (ii)$ we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}t\cos t}}{{ - 3a{{\cos }^2}t\sin t}}$
Simplifying we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin t}}{{\cos t}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - {\text{tan t}}$
Again differentiating both sides with respect to $t$ we get,
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {\sec ^2}t \times \dfrac{{dt}}{{dx}}$ (since $\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$)
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{\dfrac{{dx}}{{dt}}}}$
Substituting for $\dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t$ we get,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{ - 3a{{\cos }^2}t\sin t}}$
Since $\sec t = \dfrac{1}{{\cos t}}$, squaring both sides we have, ${\sec ^2}t = \dfrac{1}{{{{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^2}t\sin t \times {{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^4}t\sin t}}$
We need to find $\dfrac{{{d^2}y}}{{d{x^2}}}$ at $t = \dfrac{\pi }{4}$.
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\cos }^4}\dfrac{\pi }{4}\sin \dfrac{\pi }{4}}}$
We have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Substituting we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^4}\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}$
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a\dfrac{1}{4} \times \dfrac{1}{{\sqrt 2 }}}}$
Simplifying we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{{4\sqrt 2 }}{{3a}}$
$\therefore $ The answer is option C.
Note: We could use the above method here because both the given functions were dependent on a common variable. Otherwise taking derivatives about a function is a tedious task. The value of $t$ must be substituted after finding the second derivative. It is wrong if we substitute it in the first derivative itself and then differentiating the second time.
Useful formula:
For functions $x,y$ and some parameter $t$,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Also, for any $x,t$ and $u$ as a function of $x$,we have
$\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$, where $n$ is any number.
$\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$
$\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$
Also, we have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
$\sec t = \dfrac{1}{{\cos t}}$
Complete step-by-step answer:
To find the second order derivative of $a{\sin ^3}t$ with respect to $a{\cos ^3}t$,
Let $y = a{\sin ^3}t$, $x = a{\cos ^3}t$
So, we have to find $\dfrac{{{d^2}y}}{{d{x^2}}}$.
We have $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Consider $y = a{\sin ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dy}}{{dt}} = a \times 3{\sin ^2}t \times \dfrac{{d(\sin t)}}{{dt}}$$\sec t = \dfrac{1}{{\cos t}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\sin t)}}{{dt}} = \cos t$
$ \Rightarrow \dfrac{{dy}}{{dt}} = 3a{\sin ^2}t\cos t - - - (i)$
Now consider $x = a{\cos ^3}t$
Differentiating both sides with respect to $t$, we get,
$\dfrac{{dx}}{{dt}} = a \times 3{\cos ^2}t \times \dfrac{{d(\cos t)}}{{dt}}$
(Since $\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}$ and $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$)
Also $\dfrac{{d(\cos t)}}{{dt}} = - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = 3a{\cos ^2}t \times - \sin t$
$ \Rightarrow \dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t - - - (ii)$
Now we have, $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substituting using $(i)\& (ii)$ we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}t\cos t}}{{ - 3a{{\cos }^2}t\sin t}}$
Simplifying we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin t}}{{\cos t}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - {\text{tan t}}$
Again differentiating both sides with respect to $t$ we get,
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {\sec ^2}t \times \dfrac{{dt}}{{dx}}$ (since $\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t$)
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{\dfrac{{dx}}{{dt}}}}$
Substituting for $\dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t$ we get,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{ - 3a{{\cos }^2}t\sin t}}$
Since $\sec t = \dfrac{1}{{\cos t}}$, squaring both sides we have, ${\sec ^2}t = \dfrac{1}{{{{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^2}t\sin t \times {{\cos }^2}t}}$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^4}t\sin t}}$
We need to find $\dfrac{{{d^2}y}}{{d{x^2}}}$ at $t = \dfrac{\pi }{4}$.
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\cos }^4}\dfrac{\pi }{4}\sin \dfrac{\pi }{4}}}$
We have, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Substituting we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^4}\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}$
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a\dfrac{1}{4} \times \dfrac{1}{{\sqrt 2 }}}}$
Simplifying we get,
$ \Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{{4\sqrt 2 }}{{3a}}$
$\therefore $ The answer is option C.
Note: We could use the above method here because both the given functions were dependent on a common variable. Otherwise taking derivatives about a function is a tedious task. The value of $t$ must be substituted after finding the second derivative. It is wrong if we substitute it in the first derivative itself and then differentiating the second time.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

