
The rotational kinetic energy of a body is E. In the absence of external torque, if mass of the body is halved and radius of gyration is doubled, then its rotational kinetic energy will be:-
Answer
488.7k+ views
Hint: Whenever there is an absence of external torque, always remember angular momentum $ L $ is conserved. Therefore for this question we can use conservation of angular momentum where moment of inertia can be written in the terms of radius of gyration $ I = m{k^2} $ where $ m $ is mass of the body and k is radius of gyration.
$ L = I\omega $ , $ I = m{k^2} $ , $ K.E = \dfrac{1}{2}I{\omega ^2} $
Complete step by step answer:
The initial rotational kinetic energy of the body is given in the question as $ K.{E_1} = E $ .then it was said that there was an absence of external torque which means the total angular momentum is constant which implies the angular momentum is conserved.
CONSERVATION OF ANGULAR MOMENTUM-
$ \Rightarrow L = I\omega $ , where $ I $ is moment of inertia and $ \omega $ is angular velocity and $ L $ is angular momentum
$ {L_1} = {I_1}{\omega _1} $ ………initial conditions (1)
$ {L_2} = {I_2}{\omega _2} $ ………in the absence of torque (2)
As angular momentum is conserved we write $ {L_1} = {L_2} $
$ \Rightarrow {I_1}{\omega _1} = {I_2}{\omega _2} $ …...... (3)
$ I = m{k^2} $ , where $ I $ is moment of inertia and $ m $ is mass of body and $ k $ is radius of gyration.
Now we can write
$ {I_1} = {m_1}k_1^2 $ ……….. (4)
$ {I_2} = {m_2}k_2^2 $ ……….. (5)
UNDER ABSENCE OF TORQUE,
Given mass of body is halved so we can write $ {m_2} = \dfrac{{{m_1}}}{2} $
Given radius of gyration is double so we can write $ {k_2} = 2{k_1} $
Now, substituting these in equation 4 and 5 and taking ratios we get,
$ \Rightarrow $ $ \dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{m_1}k_1^2}}{{{m_2}k_2^2}} = \dfrac{{{m_1}k_1^2}}{{\dfrac{{{m_1}}}{2}{{\left( {2{k_1}} \right)}^2}}} = 2 \times \left( {\dfrac{1}{4}} \right) = \dfrac{1}{2} $
From equation 3 we can write
$ \Rightarrow $ $ \dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{\omega _2}}}{{{\omega _1}}} = \dfrac{1}{2} $ $ \Rightarrow $ $ 2{I_1} = {I_2} $ , $ {\omega _1} = 2{\omega _2} $
Now initial rotational kinetic energy is $ K.{E_1} = \dfrac{1}{2}{I_1}\omega _1^2 $ $ = E $ and final rotational kinetic energy can be written as $ K.{E_2} = \dfrac{1}{2}{I_2}\omega _2^2 $
$ \dfrac{{K.{E_1}}}{{K.{E_2}}} = \dfrac{{\dfrac{1}{2}{I_1}\omega _1^2}}{{\dfrac{1}{2}{I_2}\omega _2^2}} = \dfrac{{{I_1}\omega _1^2}}{{{I_2}\omega _2^2}} = \dfrac{{{I_1}{{\left( {2{\omega _2}} \right)}^2}}}{{2{I_1}\left( {\omega _2^2} \right)}} = 2 $
$ \dfrac{{K.{E_1}}}{{K.{E_2}}} = \dfrac{E}{{K.{E_2}}} = 2 $
$ \Rightarrow K.{E_2} = \dfrac{E}{2} $
Therefore, in the absence of external torque, if mass of the body is halved and radius of gyration is doubled, then its rotational kinetic energy will be halved.
Note:
Torque can be defined as the rate of change of angular momentum, analogous to force. The net external torque on any system is always equal to the total torque on the system; in other words, the sum of all internal torques of any system is always 0 (this is the rotational analogue of Newton's Third Law). Here we need to understand that angular momentum is always conserved or total angular momentum is constant in the absence of external torque.
$ L = I\omega $ , $ I = m{k^2} $ , $ K.E = \dfrac{1}{2}I{\omega ^2} $
Complete step by step answer:
The initial rotational kinetic energy of the body is given in the question as $ K.{E_1} = E $ .then it was said that there was an absence of external torque which means the total angular momentum is constant which implies the angular momentum is conserved.
CONSERVATION OF ANGULAR MOMENTUM-
$ \Rightarrow L = I\omega $ , where $ I $ is moment of inertia and $ \omega $ is angular velocity and $ L $ is angular momentum
$ {L_1} = {I_1}{\omega _1} $ ………initial conditions (1)
$ {L_2} = {I_2}{\omega _2} $ ………in the absence of torque (2)
As angular momentum is conserved we write $ {L_1} = {L_2} $
$ \Rightarrow {I_1}{\omega _1} = {I_2}{\omega _2} $ …...... (3)
$ I = m{k^2} $ , where $ I $ is moment of inertia and $ m $ is mass of body and $ k $ is radius of gyration.
Now we can write
$ {I_1} = {m_1}k_1^2 $ ……….. (4)
$ {I_2} = {m_2}k_2^2 $ ……….. (5)
UNDER ABSENCE OF TORQUE,
Given mass of body is halved so we can write $ {m_2} = \dfrac{{{m_1}}}{2} $
Given radius of gyration is double so we can write $ {k_2} = 2{k_1} $
Now, substituting these in equation 4 and 5 and taking ratios we get,
$ \Rightarrow $ $ \dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{m_1}k_1^2}}{{{m_2}k_2^2}} = \dfrac{{{m_1}k_1^2}}{{\dfrac{{{m_1}}}{2}{{\left( {2{k_1}} \right)}^2}}} = 2 \times \left( {\dfrac{1}{4}} \right) = \dfrac{1}{2} $
From equation 3 we can write
$ \Rightarrow $ $ \dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{\omega _2}}}{{{\omega _1}}} = \dfrac{1}{2} $ $ \Rightarrow $ $ 2{I_1} = {I_2} $ , $ {\omega _1} = 2{\omega _2} $
Now initial rotational kinetic energy is $ K.{E_1} = \dfrac{1}{2}{I_1}\omega _1^2 $ $ = E $ and final rotational kinetic energy can be written as $ K.{E_2} = \dfrac{1}{2}{I_2}\omega _2^2 $
$ \dfrac{{K.{E_1}}}{{K.{E_2}}} = \dfrac{{\dfrac{1}{2}{I_1}\omega _1^2}}{{\dfrac{1}{2}{I_2}\omega _2^2}} = \dfrac{{{I_1}\omega _1^2}}{{{I_2}\omega _2^2}} = \dfrac{{{I_1}{{\left( {2{\omega _2}} \right)}^2}}}{{2{I_1}\left( {\omega _2^2} \right)}} = 2 $
$ \dfrac{{K.{E_1}}}{{K.{E_2}}} = \dfrac{E}{{K.{E_2}}} = 2 $
$ \Rightarrow K.{E_2} = \dfrac{E}{2} $
Therefore, in the absence of external torque, if mass of the body is halved and radius of gyration is doubled, then its rotational kinetic energy will be halved.
Note:
Torque can be defined as the rate of change of angular momentum, analogous to force. The net external torque on any system is always equal to the total torque on the system; in other words, the sum of all internal torques of any system is always 0 (this is the rotational analogue of Newton's Third Law). Here we need to understand that angular momentum is always conserved or total angular momentum is constant in the absence of external torque.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

