
The roots $\alpha $ and $\beta $ of the quadratic equation ${{x}^{2}}-5x+3\left( k-1 \right)=0$ are such that $\alpha -\beta =11$ . Find the value of k
Answer
510.6k+ views
Hint: To find the value of k, we have to find $\alpha $ and $\beta $ . We know that for a quadratic polynomial $a{{x}^{2}}+bx+c$ , the sum of the roots, $\alpha +\beta =\dfrac{-b}{a}$ . We have to compare the standard form to the given polynomial and substitute the values in the equation. We are also given that $\alpha -\beta =11$ . We have to solve these two equations and find the value of $\alpha $ and $\beta $ . For a quadratic polynomial, the product of the roots is equal to $\dfrac{c}{a}$ . We have to compare the standard form to the given polynomial, substitute the values in the equation and solve for k.
Complete step by step solution:
We are given that ${{x}^{2}}-5x+3\left( k-1 \right)=0$ . We know that for a quadratic polynomial $a{{x}^{2}}+bx+c$ , the sum of the roots of this polynomial is $\dfrac{-b}{a}$ . Let $\alpha $ and $\beta $ be the roots.
$\Rightarrow \alpha +\beta =\dfrac{-b}{a}$
From the given equation, we can see that $a=1,b=-5$ and $c=3\left( k-1 \right)$ . Therefore, we can write the sum of the roots as
$\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{-\left( 5 \right)}{1} \\
& \Rightarrow \alpha +\beta =5...\left( i \right) \\
\end{align}$
We know that the product of the roots is equal to $\dfrac{c}{a}$ .
$\Rightarrow \alpha \beta =\dfrac{c}{a}$
From the given equation, we know that $a=1\text{ and }c=3\left( k-1 \right)$ . Therefore, we can write the product of the roots as
$\begin{align}
& \Rightarrow \alpha \beta =\dfrac{3\left( k-1 \right)}{1} \\
& \Rightarrow \alpha \beta =3\left( k-1 \right)...\left( ii \right) \\
\end{align}$
We are given that $\alpha -\beta =11...\left( iii \right)$
Let us add equations (i) and (iii).
$\Rightarrow \alpha +\beta +\alpha -\beta =5+11$
We can see that $\beta $ cancels out.
\[\begin{align}
& \Rightarrow \alpha +\require{cancel}\cancel{\beta }+\alpha -\require{cancel}\cancel{\beta }=5+11 \\
& \Rightarrow 2\alpha =16 \\
\end{align}\]
We have to take 2 to the RHS.
$\begin{align}
& \Rightarrow \alpha =\dfrac{16}{2} \\
& \Rightarrow \alpha =8 \\
\end{align}$
Let us substitute the above value in equation (i).
$\begin{align}
& \Rightarrow 8+\beta =5 \\
& \Rightarrow \beta =5-8 \\
& \Rightarrow \beta =-3 \\
\end{align}$
Now, we have substitute the values of $\alpha $ and $\beta $ in equation (ii).
$\begin{align}
& \Rightarrow 8\times -3=3\left( k-1 \right) \\
& \Rightarrow -24=3\left( k-1 \right) \\
\end{align}$
We have to apply distributive property on the RHS.
$\Rightarrow -24=3k-3$
Let us take -3 to the LHS.
$\begin{align}
& \Rightarrow -24+3=3k \\
& \Rightarrow 3k=-24+3 \\
& \Rightarrow 3k=-21 \\
\end{align}$
We have to take 3 to the RHS.
$\begin{align}
& \Rightarrow k=\dfrac{-21}{3} \\
& \Rightarrow k=-7 \\
\end{align}$
Hence, the value of k is -7.
Note: Students must know properties of the roots of quadratic polynomials. They must know to solve two equations. We can also find the value of k in an alternate method.
We have obtained three equations from the above solution.
$\begin{align}
& \Rightarrow \alpha +\beta =5...\left( i \right) \\
& \alpha \beta =3\left( k-1 \right)...\left( ii \right) \\
& \alpha -\beta =11...\left( iii \right) \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ . We can write $\left( a-b \right)$ from this formula as
$\left( a-b \right)=\sqrt{{{a}^{2}}-2ab+{{b}^{2}}}$
We have to substitute $a=\alpha $ and $b=\beta $ in the above formula.
$\Rightarrow \left( \alpha -\beta \right)=\sqrt{{{\alpha }^{2}}-2\alpha \beta +{{\beta }^{2}}}$
Let us add and subtract $2\alpha \beta $ to the RHS.
$\begin{align}
& \Rightarrow \left( \alpha -\beta \right)=\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -2\alpha \beta -2\alpha \beta } \\
& \Rightarrow \left( \alpha -\beta \right)=\sqrt{\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)-4\alpha \beta } \\
\end{align}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the above equation becomes
$\Rightarrow \left( \alpha -\beta \right)=\sqrt{{{\left( \alpha +\beta \right)}^{2}}-4\alpha \beta }$
Let us substitute equations (i), (ii) and (iii) in the above equation.
$\begin{align}
& \Rightarrow 11=\sqrt{{{5}^{2}}-4\times 3\left( k-1 \right)} \\
& \Rightarrow 11=\sqrt{25-12k+12} \\
& \Rightarrow 11=\sqrt{37-12k} \\
\end{align}$
Let us square both the sides.
$\begin{align}
& \Rightarrow {{11}^{2}}=37-12k \\
& \Rightarrow 121=37-12k \\
& \Rightarrow 121-37=-12k \\
& \Rightarrow 84=-12k \\
& \Rightarrow -12k=84 \\
\end{align}$
We have to take -12 to the RHS.
$\begin{align}
& \Rightarrow k=\dfrac{84}{-12} \\
& \Rightarrow k=-7 \\
\end{align}$
Complete step by step solution:
We are given that ${{x}^{2}}-5x+3\left( k-1 \right)=0$ . We know that for a quadratic polynomial $a{{x}^{2}}+bx+c$ , the sum of the roots of this polynomial is $\dfrac{-b}{a}$ . Let $\alpha $ and $\beta $ be the roots.
$\Rightarrow \alpha +\beta =\dfrac{-b}{a}$
From the given equation, we can see that $a=1,b=-5$ and $c=3\left( k-1 \right)$ . Therefore, we can write the sum of the roots as
$\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{-\left( 5 \right)}{1} \\
& \Rightarrow \alpha +\beta =5...\left( i \right) \\
\end{align}$
We know that the product of the roots is equal to $\dfrac{c}{a}$ .
$\Rightarrow \alpha \beta =\dfrac{c}{a}$
From the given equation, we know that $a=1\text{ and }c=3\left( k-1 \right)$ . Therefore, we can write the product of the roots as
$\begin{align}
& \Rightarrow \alpha \beta =\dfrac{3\left( k-1 \right)}{1} \\
& \Rightarrow \alpha \beta =3\left( k-1 \right)...\left( ii \right) \\
\end{align}$
We are given that $\alpha -\beta =11...\left( iii \right)$
Let us add equations (i) and (iii).
$\Rightarrow \alpha +\beta +\alpha -\beta =5+11$
We can see that $\beta $ cancels out.
\[\begin{align}
& \Rightarrow \alpha +\require{cancel}\cancel{\beta }+\alpha -\require{cancel}\cancel{\beta }=5+11 \\
& \Rightarrow 2\alpha =16 \\
\end{align}\]
We have to take 2 to the RHS.
$\begin{align}
& \Rightarrow \alpha =\dfrac{16}{2} \\
& \Rightarrow \alpha =8 \\
\end{align}$
Let us substitute the above value in equation (i).
$\begin{align}
& \Rightarrow 8+\beta =5 \\
& \Rightarrow \beta =5-8 \\
& \Rightarrow \beta =-3 \\
\end{align}$
Now, we have substitute the values of $\alpha $ and $\beta $ in equation (ii).
$\begin{align}
& \Rightarrow 8\times -3=3\left( k-1 \right) \\
& \Rightarrow -24=3\left( k-1 \right) \\
\end{align}$
We have to apply distributive property on the RHS.
$\Rightarrow -24=3k-3$
Let us take -3 to the LHS.
$\begin{align}
& \Rightarrow -24+3=3k \\
& \Rightarrow 3k=-24+3 \\
& \Rightarrow 3k=-21 \\
\end{align}$
We have to take 3 to the RHS.
$\begin{align}
& \Rightarrow k=\dfrac{-21}{3} \\
& \Rightarrow k=-7 \\
\end{align}$
Hence, the value of k is -7.
Note: Students must know properties of the roots of quadratic polynomials. They must know to solve two equations. We can also find the value of k in an alternate method.
We have obtained three equations from the above solution.
$\begin{align}
& \Rightarrow \alpha +\beta =5...\left( i \right) \\
& \alpha \beta =3\left( k-1 \right)...\left( ii \right) \\
& \alpha -\beta =11...\left( iii \right) \\
\end{align}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ . We can write $\left( a-b \right)$ from this formula as
$\left( a-b \right)=\sqrt{{{a}^{2}}-2ab+{{b}^{2}}}$
We have to substitute $a=\alpha $ and $b=\beta $ in the above formula.
$\Rightarrow \left( \alpha -\beta \right)=\sqrt{{{\alpha }^{2}}-2\alpha \beta +{{\beta }^{2}}}$
Let us add and subtract $2\alpha \beta $ to the RHS.
$\begin{align}
& \Rightarrow \left( \alpha -\beta \right)=\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -2\alpha \beta -2\alpha \beta } \\
& \Rightarrow \left( \alpha -\beta \right)=\sqrt{\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)-4\alpha \beta } \\
\end{align}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the above equation becomes
$\Rightarrow \left( \alpha -\beta \right)=\sqrt{{{\left( \alpha +\beta \right)}^{2}}-4\alpha \beta }$
Let us substitute equations (i), (ii) and (iii) in the above equation.
$\begin{align}
& \Rightarrow 11=\sqrt{{{5}^{2}}-4\times 3\left( k-1 \right)} \\
& \Rightarrow 11=\sqrt{25-12k+12} \\
& \Rightarrow 11=\sqrt{37-12k} \\
\end{align}$
Let us square both the sides.
$\begin{align}
& \Rightarrow {{11}^{2}}=37-12k \\
& \Rightarrow 121=37-12k \\
& \Rightarrow 121-37=-12k \\
& \Rightarrow 84=-12k \\
& \Rightarrow -12k=84 \\
\end{align}$
We have to take -12 to the RHS.
$\begin{align}
& \Rightarrow k=\dfrac{84}{-12} \\
& \Rightarrow k=-7 \\
\end{align}$
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

