
The resultant of two forces 3P and 2P is R. If the first force is doubled then the resultant is also doubled, then the angle between two forces is:
A). \[60{}^\circ \]
B). \[120{}^\circ \]
C). \[70{}^\circ \]
D). \[180{}^\circ \]
Answer
600.3k+ views
Hint: The question can be easily solved by using the formula for resultant vector. Here we can find the angle between the two forces by equating the two equations for resultant vectors R and 2R and 6P and 2P respectively with a constant angle between the forces.
Formula Used: The formula for resultant vector is given by:
\[R=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }\]
\[\theta \] is the angle between vectors A and B.
Complete step by step answer:
A resultant vector is a vector that produces the same effect as is produced by the individual vectors together.
Equation for resultant vector R when the given vector forces are 3P and 2P:
\[R=\sqrt{{{(3P)}^{2}}+{{(2P)}^{2}}+2(3P)(2P)\cos \theta }\]
\[R=\sqrt{9{{P}^{2}}+4{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[R=\sqrt{13{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[\Rightarrow {{R}^{2}}=13{{P}^{2}}+12{{P}^{2}}\cos \theta \] ………………..(1)
Now, the equations for resultant vector 2R when the given vectors are 6P and 2P:
\[2R=\sqrt{{{(6P)}^{2}}+{{(2P)}^{2}}+2(6P)(2P)\cos \theta }\]
\[2R=\sqrt{36{{P}^{2}}+4{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[2R=\sqrt{40{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[{{(2R)}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[4{{R}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \] …………………………..(2)
On substituting the value of \[{{R}^{2}}\] from equation (1) in (2) we get,
\[4(13{{P}^{2}}+12{{P}^{2}}\cos \theta )=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[52{{P}^{2}}+48{{P}^{2}}\cos \theta =40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[24{{P}^{2}}\cos \theta =-12{{P}^{2}}\]
\[\cos \theta =-\dfrac{1}{2}\]
\[\Rightarrow \theta =120{}^\circ \]
Hence, the correct answer is option B. \[120{}^\circ \].
Note: The magnitude of resultant of two vectors is maximum when the vectors are in the same direction and it is minimum when the two vectors act in the opposite direction. When in the same direction the vectors are added to get the resultant and when they are in the opposite direction they are subtracted.
Formula Used: The formula for resultant vector is given by:
\[R=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }\]
\[\theta \] is the angle between vectors A and B.
Complete step by step answer:
A resultant vector is a vector that produces the same effect as is produced by the individual vectors together.
Equation for resultant vector R when the given vector forces are 3P and 2P:
\[R=\sqrt{{{(3P)}^{2}}+{{(2P)}^{2}}+2(3P)(2P)\cos \theta }\]
\[R=\sqrt{9{{P}^{2}}+4{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[R=\sqrt{13{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[\Rightarrow {{R}^{2}}=13{{P}^{2}}+12{{P}^{2}}\cos \theta \] ………………..(1)
Now, the equations for resultant vector 2R when the given vectors are 6P and 2P:
\[2R=\sqrt{{{(6P)}^{2}}+{{(2P)}^{2}}+2(6P)(2P)\cos \theta }\]
\[2R=\sqrt{36{{P}^{2}}+4{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[2R=\sqrt{40{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[{{(2R)}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[4{{R}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \] …………………………..(2)
On substituting the value of \[{{R}^{2}}\] from equation (1) in (2) we get,
\[4(13{{P}^{2}}+12{{P}^{2}}\cos \theta )=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[52{{P}^{2}}+48{{P}^{2}}\cos \theta =40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[24{{P}^{2}}\cos \theta =-12{{P}^{2}}\]
\[\cos \theta =-\dfrac{1}{2}\]
\[\Rightarrow \theta =120{}^\circ \]
Hence, the correct answer is option B. \[120{}^\circ \].
Note: The magnitude of resultant of two vectors is maximum when the vectors are in the same direction and it is minimum when the two vectors act in the opposite direction. When in the same direction the vectors are added to get the resultant and when they are in the opposite direction they are subtracted.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

