
The resultant of two forces 3P and 2P is R. If the first force is doubled then the resultant is also doubled, then the angle between two forces is:
A). \[60{}^\circ \]
B). \[120{}^\circ \]
C). \[70{}^\circ \]
D). \[180{}^\circ \]
Answer
585.9k+ views
Hint: The question can be easily solved by using the formula for resultant vector. Here we can find the angle between the two forces by equating the two equations for resultant vectors R and 2R and 6P and 2P respectively with a constant angle between the forces.
Formula Used: The formula for resultant vector is given by:
\[R=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }\]
\[\theta \] is the angle between vectors A and B.
Complete step by step answer:
A resultant vector is a vector that produces the same effect as is produced by the individual vectors together.
Equation for resultant vector R when the given vector forces are 3P and 2P:
\[R=\sqrt{{{(3P)}^{2}}+{{(2P)}^{2}}+2(3P)(2P)\cos \theta }\]
\[R=\sqrt{9{{P}^{2}}+4{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[R=\sqrt{13{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[\Rightarrow {{R}^{2}}=13{{P}^{2}}+12{{P}^{2}}\cos \theta \] ………………..(1)
Now, the equations for resultant vector 2R when the given vectors are 6P and 2P:
\[2R=\sqrt{{{(6P)}^{2}}+{{(2P)}^{2}}+2(6P)(2P)\cos \theta }\]
\[2R=\sqrt{36{{P}^{2}}+4{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[2R=\sqrt{40{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[{{(2R)}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[4{{R}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \] …………………………..(2)
On substituting the value of \[{{R}^{2}}\] from equation (1) in (2) we get,
\[4(13{{P}^{2}}+12{{P}^{2}}\cos \theta )=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[52{{P}^{2}}+48{{P}^{2}}\cos \theta =40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[24{{P}^{2}}\cos \theta =-12{{P}^{2}}\]
\[\cos \theta =-\dfrac{1}{2}\]
\[\Rightarrow \theta =120{}^\circ \]
Hence, the correct answer is option B. \[120{}^\circ \].
Note: The magnitude of resultant of two vectors is maximum when the vectors are in the same direction and it is minimum when the two vectors act in the opposite direction. When in the same direction the vectors are added to get the resultant and when they are in the opposite direction they are subtracted.
Formula Used: The formula for resultant vector is given by:
\[R=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }\]
\[\theta \] is the angle between vectors A and B.
Complete step by step answer:
A resultant vector is a vector that produces the same effect as is produced by the individual vectors together.
Equation for resultant vector R when the given vector forces are 3P and 2P:
\[R=\sqrt{{{(3P)}^{2}}+{{(2P)}^{2}}+2(3P)(2P)\cos \theta }\]
\[R=\sqrt{9{{P}^{2}}+4{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[R=\sqrt{13{{P}^{2}}+12{{P}^{2}}\cos \theta }\]
\[\Rightarrow {{R}^{2}}=13{{P}^{2}}+12{{P}^{2}}\cos \theta \] ………………..(1)
Now, the equations for resultant vector 2R when the given vectors are 6P and 2P:
\[2R=\sqrt{{{(6P)}^{2}}+{{(2P)}^{2}}+2(6P)(2P)\cos \theta }\]
\[2R=\sqrt{36{{P}^{2}}+4{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[2R=\sqrt{40{{P}^{2}}+24{{P}^{2}}\cos \theta }\]
\[{{(2R)}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[4{{R}^{2}}=40{{P}^{2}}+24{{P}^{2}}\cos \theta \] …………………………..(2)
On substituting the value of \[{{R}^{2}}\] from equation (1) in (2) we get,
\[4(13{{P}^{2}}+12{{P}^{2}}\cos \theta )=40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[52{{P}^{2}}+48{{P}^{2}}\cos \theta =40{{P}^{2}}+24{{P}^{2}}\cos \theta \]
\[24{{P}^{2}}\cos \theta =-12{{P}^{2}}\]
\[\cos \theta =-\dfrac{1}{2}\]
\[\Rightarrow \theta =120{}^\circ \]
Hence, the correct answer is option B. \[120{}^\circ \].
Note: The magnitude of resultant of two vectors is maximum when the vectors are in the same direction and it is minimum when the two vectors act in the opposite direction. When in the same direction the vectors are added to get the resultant and when they are in the opposite direction they are subtracted.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

