
The resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100 ohm. The conductivity of this solution is 1.29 \[S\;{m^{ - 1}}\]. Resistance of the same cell when filled with 0.2 M of the same solution is 520 ohm. The molar conductivity of 0.02M solution of the electrolyte will be:
A. \[124 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\]
B. \[1240 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\]
C. \[1.24 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\]
D. \[12.4 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\]
Answer
552.6k+ views
Hint:The conductance is defined as the inverse of resistance. The conductivity of the solution is equal to length divided by area multiplied by conductance. Volume is calculated in \[c{m^3}\]which is related to the molar conductance. The molar conductance is calculated by multiplying conductivity multiplied by volume.
Complete step by step answer:
Given
Resistance for electrolyte containing 0.1M solution is 100 ohm.
Concentration of electrolyte is 0.1M.
The conductivity of the solution is 1.29 \[S\;{m^{ - 1}}\].
The relationship between the conductivity and resistance is shown below.
Resistance for a cell containing 0.2 M solution is 520 ohm.
\[K = \dfrac{1}{R}\left( {\dfrac{l}{a}} \right)\]
Where,
K is the conductivity
R is the resistance
l is the length
a is the area.
Substitute the values in the above equation.
\[ \Rightarrow 1.29 = \dfrac{1}{{100}}\left( {\dfrac{l}{a}} \right)\]
\[ \Rightarrow \left( {\dfrac{l}{a}} \right) = 129{m^{ - 1}}\]
For 0.2 M solution
\[ \Rightarrow k = \dfrac{1}{{520}}\left( {129} \right){\Omega ^{ - 1}}{m^{ - 1}}\]
The relation between the molar conductance and conductivity is shown below.
The formula to calculate the molar conductance is shown below.
\[\mu = k \times V\]
Where,
\[\mu \] is molar conductance
K is the conductivity.
V is the volume.
Substitute the values in the above equation.
\[ \Rightarrow \mu = \dfrac{1}{{520}} \times 129 \times \dfrac{{1000}}{{0.02}} \times {10^{ - 6}}{m^3}\]
\[ \Rightarrow \mu = \dfrac{{129}}{{520}} \times \dfrac{{1000}}{{0.02}} \times {10^{ - 6}}{m^3}\]
\[ \Rightarrow \mu = 124 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\]
Thus, the molar conductivity of the solution is \[124 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\].
Therefore, the correct option is A.
Note:
The resistance of the conductor varies directly to its length (l) and inversely to the cross sectional area (A). Make sure to convert the value in \[c{m^3}\]. l = 1 cm and A = 1 \[c{m^2}\].
Complete step by step answer:
Given
Resistance for electrolyte containing 0.1M solution is 100 ohm.
Concentration of electrolyte is 0.1M.
The conductivity of the solution is 1.29 \[S\;{m^{ - 1}}\].
The relationship between the conductivity and resistance is shown below.
Resistance for a cell containing 0.2 M solution is 520 ohm.
\[K = \dfrac{1}{R}\left( {\dfrac{l}{a}} \right)\]
Where,
K is the conductivity
R is the resistance
l is the length
a is the area.
Substitute the values in the above equation.
\[ \Rightarrow 1.29 = \dfrac{1}{{100}}\left( {\dfrac{l}{a}} \right)\]
\[ \Rightarrow \left( {\dfrac{l}{a}} \right) = 129{m^{ - 1}}\]
For 0.2 M solution
\[ \Rightarrow k = \dfrac{1}{{520}}\left( {129} \right){\Omega ^{ - 1}}{m^{ - 1}}\]
The relation between the molar conductance and conductivity is shown below.
The formula to calculate the molar conductance is shown below.
\[\mu = k \times V\]
Where,
\[\mu \] is molar conductance
K is the conductivity.
V is the volume.
Substitute the values in the above equation.
\[ \Rightarrow \mu = \dfrac{1}{{520}} \times 129 \times \dfrac{{1000}}{{0.02}} \times {10^{ - 6}}{m^3}\]
\[ \Rightarrow \mu = \dfrac{{129}}{{520}} \times \dfrac{{1000}}{{0.02}} \times {10^{ - 6}}{m^3}\]
\[ \Rightarrow \mu = 124 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\]
Thus, the molar conductivity of the solution is \[124 \times {10^{ - 4}}S{m^2}mo{l^{ - 1}}\].
Therefore, the correct option is A.
Note:
The resistance of the conductor varies directly to its length (l) and inversely to the cross sectional area (A). Make sure to convert the value in \[c{m^3}\]. l = 1 cm and A = 1 \[c{m^2}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

