
The relationship between \[Pc,\text{ }Vc\] and \[Tc\] is:
A.${{P}_{c}}{{V}_{c}}=R{{T}_{c}}$
B.\[{{P}_{c}}{{V}_{c}}=3R{{T}_{c}}\]
C.\[{{P}_{c}}{{V}_{c}}=\dfrac{3}{5}R{{T}_{c}}\]
D.\[{{P}_{c}}{{V}_{c}}=\dfrac{3}{8}R{{T}_{c}}\]
Answer
511.2k+ views
Hint: We know that recall the meaning of compressibility factor, critical temperature, pressure, and volume. Think about how all of these are related and expressed in terms of the Vander Waals constants.
Complete answer:
Here is the compressibility factor which shows the deviation of the behaviour of a real gas from the behaviour of an ideal gas. The Vander Waals constants ‘a’ and ‘b’ are used to calculate the value of at critical temperature, pressure, and volume.
\[{{T}_{c}}=~\] Temperature at and above which the vapour state cannot be further liquefied; \[{{P}_{c}}=~\] Pressure of gas in its critical state; \[{{V}_{c}}=~\] Volume of gas in its critical state.
Thus, we know that relation with the van der Waals constants -
\[{{T}_{c}}=\dfrac{8a}{27Rb~};a=\dfrac{27}{8}{{T}_{c}}Rb\] and \[{{V}_{c}}=3b~\]; \[b=\dfrac{{{V}_{c}}}{3}\]
Thus,\[{{P}_{c}}=\dfrac{a}{27{{b}^{2}}}...\left( 1 \right)\]
Put the value of a and b in \[equation\text{ }\left( 1 \right)\] we get;
\[Pc=\dfrac{27{{T}_{c}}\times R\times b}{8\times 27\times {{b}^{2}}}\]
On further solving we get;
\[{{P}_{c}}=\dfrac{27{{T}_{c}}R}{8\times 27\times b}=\dfrac{27{{T}_{c}}R}{8\times 27\times \dfrac{Vc}{3}}\]
Further we get; ${{P}_{c}}{{V}_{c}}=\dfrac{3}{8}R{{T}_{c}}$
Therefore, the correct answer is option D.
Note:
Remember that the compressibility factor in the critical state of any real gas is known to be \[~3/8\]. The relation between the critical states and the Vander Waals constant is derived using Van Der Waals real gas equation.
Complete answer:
Here is the compressibility factor which shows the deviation of the behaviour of a real gas from the behaviour of an ideal gas. The Vander Waals constants ‘a’ and ‘b’ are used to calculate the value of at critical temperature, pressure, and volume.
\[{{T}_{c}}=~\] Temperature at and above which the vapour state cannot be further liquefied; \[{{P}_{c}}=~\] Pressure of gas in its critical state; \[{{V}_{c}}=~\] Volume of gas in its critical state.
Thus, we know that relation with the van der Waals constants -
\[{{T}_{c}}=\dfrac{8a}{27Rb~};a=\dfrac{27}{8}{{T}_{c}}Rb\] and \[{{V}_{c}}=3b~\]; \[b=\dfrac{{{V}_{c}}}{3}\]
Thus,\[{{P}_{c}}=\dfrac{a}{27{{b}^{2}}}...\left( 1 \right)\]
Put the value of a and b in \[equation\text{ }\left( 1 \right)\] we get;
\[Pc=\dfrac{27{{T}_{c}}\times R\times b}{8\times 27\times {{b}^{2}}}\]
On further solving we get;
\[{{P}_{c}}=\dfrac{27{{T}_{c}}R}{8\times 27\times b}=\dfrac{27{{T}_{c}}R}{8\times 27\times \dfrac{Vc}{3}}\]
Further we get; ${{P}_{c}}{{V}_{c}}=\dfrac{3}{8}R{{T}_{c}}$
Therefore, the correct answer is option D.
Note:
Remember that the compressibility factor in the critical state of any real gas is known to be \[~3/8\]. The relation between the critical states and the Vander Waals constant is derived using Van Der Waals real gas equation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

