
The rectangular components of a vector lying in XY plane are 1 and p+1. If the coordinate system is turned by \[{30^ \circ }\], they are p and 4 respectively. The value of p is
A) 2
B) 4
C) 3.5
D) 7
Answer
572.1k+ views
Hint:
First of all, we’ll let the vector composition after turning by \[{30^ \circ }\]. We have given value of component after rotation. we’ll use then to get the final answer.
Complete step by step solution:
Given that components of vector lying in XY plane are 1 and p+1.
Let the components after rotation be x’ and y’ respectively.
x’= \[x\cos \theta + y\sin \theta \]
y’= \[y\cos \theta - x\sin \theta \]
but it is already given that after rotation of the system by \[{30^ \circ }\], the coordinates become p and 4.
So,
p= \[x\cos \theta + y\sin \theta \]
But \[\theta \]=\[{30^ \circ }\] , x coordinate =1 and y coordinate = p+1 is given
\[
\Rightarrow p = 1\cos {30^ \circ } + \left( {p + 1} \right)\sin {30^ \circ } \\
\Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2} \\
\]
Now ,
4=\[y\cos \theta - x\sin \theta \]
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos {30^ \circ } - 1\sin {30^ \circ } \\
\Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2} \\
\]
Solving this equation ,
\[
\Rightarrow 4 \times 2 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 + 1 = \left( {p + 1} \right)\sqrt 3 \\
\Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \left( {p + 1} \right) \\
\Rightarrow \dfrac{{3 \times \sqrt 3 \times \sqrt 3 }}{{\sqrt 3 }} = \left( {p + 1} \right) \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Value of p=4.
Hence option B is correct.
Note:
1) Rectangular components are obtained from a vector itself, one of the x-axis and another on the y-axis.
2) If A is a vector then its x component is Ax and its y component is Ay.
3) Some angle is also resolved along with these vectors.
First of all, we’ll let the vector composition after turning by \[{30^ \circ }\]. We have given value of component after rotation. we’ll use then to get the final answer.
Complete step by step solution:
Given that components of vector lying in XY plane are 1 and p+1.
Let the components after rotation be x’ and y’ respectively.
x’= \[x\cos \theta + y\sin \theta \]
y’= \[y\cos \theta - x\sin \theta \]
but it is already given that after rotation of the system by \[{30^ \circ }\], the coordinates become p and 4.
So,
p= \[x\cos \theta + y\sin \theta \]
But \[\theta \]=\[{30^ \circ }\] , x coordinate =1 and y coordinate = p+1 is given
\[
\Rightarrow p = 1\cos {30^ \circ } + \left( {p + 1} \right)\sin {30^ \circ } \\
\Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2} \\
\]
Now ,
4=\[y\cos \theta - x\sin \theta \]
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos {30^ \circ } - 1\sin {30^ \circ } \\
\Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2} \\
\]
Solving this equation ,
\[
\Rightarrow 4 \times 2 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 + 1 = \left( {p + 1} \right)\sqrt 3 \\
\Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \left( {p + 1} \right) \\
\Rightarrow \dfrac{{3 \times \sqrt 3 \times \sqrt 3 }}{{\sqrt 3 }} = \left( {p + 1} \right) \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Value of p=4.
Hence option B is correct.
Note:
1) Rectangular components are obtained from a vector itself, one of the x-axis and another on the y-axis.
2) If A is a vector then its x component is Ax and its y component is Ay.
3) Some angle is also resolved along with these vectors.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

