
The ratio of the number of boys and the girls is \[4:3\]. If there are 18 girls in a class, then find the total number of students in the class.
A.40
B.41
C.42
D.43
Answer
566.7k+ views
Hint: We are given the ratio of the number of boys and the girls and the number of girls. First, we’ll assume a variable for the number of boys and substituting that in the given ratio we’ll get the number of boys.
Now, we know that the total number of students is equal to the sum of the number of boys and the number of girls so on adding these values we’ll get our answer.
Complete step-by-step answer:
Given data: The ratio of the number of boys and girls is \[4:3\]
The number of girls=18
Let the number of boys be B
According to the given data, boys to girls ratio is \[4:3\]
i.e. $\dfrac{B}{{18}} = \dfrac{4}{3}$
On rearranging we get,
$ \Rightarrow B = \dfrac{4}{3}\left( {18} \right)$
On simplifying we get,
$ \Rightarrow B = 4\left( 6 \right)$
$\therefore B = 24$
It is well known that the total number of students in the class is equal to the sum of the number of boys and the number of girls.
\[The{\text{ }}total{\text{ }}number{\text{ }}of{\text{ }}students = 18 + 24\]
Hence, Total number of students is 42.
Option(C) is the correct option.
Note: Alternative way to find the total number of students can be
We can say that the number of boys is equal to the difference between the total number of students let’s say ‘N’ and the number of girls
According to the ratio given
i.e. $\dfrac{{N - 18}}{{18}} = \dfrac{4}{3}$
On simplification we get,
$ \Rightarrow N - 18 = \dfrac{4}{3}(18)$
$ \Rightarrow N = 24 + 18$
$\therefore N = 42$
From both the methods the total number of students is 42.
i.e. option(C) 42
Now, we know that the total number of students is equal to the sum of the number of boys and the number of girls so on adding these values we’ll get our answer.
Complete step-by-step answer:
Given data: The ratio of the number of boys and girls is \[4:3\]
The number of girls=18
Let the number of boys be B
According to the given data, boys to girls ratio is \[4:3\]
i.e. $\dfrac{B}{{18}} = \dfrac{4}{3}$
On rearranging we get,
$ \Rightarrow B = \dfrac{4}{3}\left( {18} \right)$
On simplifying we get,
$ \Rightarrow B = 4\left( 6 \right)$
$\therefore B = 24$
It is well known that the total number of students in the class is equal to the sum of the number of boys and the number of girls.
\[The{\text{ }}total{\text{ }}number{\text{ }}of{\text{ }}students = 18 + 24\]
Hence, Total number of students is 42.
Option(C) is the correct option.
Note: Alternative way to find the total number of students can be
We can say that the number of boys is equal to the difference between the total number of students let’s say ‘N’ and the number of girls
According to the ratio given
i.e. $\dfrac{{N - 18}}{{18}} = \dfrac{4}{3}$
On simplification we get,
$ \Rightarrow N - 18 = \dfrac{4}{3}(18)$
$ \Rightarrow N = 24 + 18$
$\therefore N = 42$
From both the methods the total number of students is 42.
i.e. option(C) 42
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What is 1 divided by 0 class 8 maths CBSE

Advantages and disadvantages of science

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

The past tense of Cut is Cutted A Yes B No class 8 english CBSE


