The ratio of SI units to CGS units of G is
$\text{A}\text{. }{{10}^{3}}$
$\text{B}\text{. }{{10}^{2}}$
$\text{C}\text{. }{{10}^{-2}}$
$\text{D}\text{. }{{10}^{-3}}$
Answer
Verified
474.6k+ views
Hint: From the formula for the gravitational force between two point sized bodies, we get that $G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}$. Use this equation for G and find the SI and CGS units of G. 1N = ${{10}^{5}}$dyn, 1m = ${{10}^{2}}$cm and 1kg = ${{10}^{3}}$g, these relations will help in find the ratio of SI unit to CGS unit of G.
Complete step-by-step answer:
G is the universal gravitational constant. It is a proportionality constant used in the equation of the gravitational force between two point sized bodies that are separated by a distance d, i.e. $F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}$…. (i)
Let us find the SI units of the gravitational constant G by using equation (i).
The SI unit of force F is Newton (N).
The SI unit of distance r is metre (m).
The SI units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is kilogram (kg).
Therefore, the SI unit of G is $\dfrac{N{{(m)}^{2}}}{kg\times kg}=\dfrac{N{{m}^{2}}}{k{{g}^{2}}}=N{{m}^{2}}k{{g}^{-2}}$ …. (ii)
Now, let us calculate the CGS unit of G.
The CGS unit of force F is dyne (dyn).
The CGS unit of distance r is centimetre (cm).
The CGS units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is gram (g).
Therefore, the CGS unit of G is $\dfrac{dyn{{(cm)}^{2}}}{g\times g}=\dfrac{(dyn)c{{m}^{2}}}{{{g}^{2}}}=(dyn)c{{m}^{2}}{{g}^{-2}}$ …. (iii)
Now divide the Si unit (ii) of G by CGS unit (iii) of G.
$\dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{N{{m}^{2}}k{{g}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}$ …. (iv).
1N = ${{10}^{5}}$dyn
1m = ${{10}^{2}}$cm
1kg = ${{10}^{3}}$g
Substitute the values of 1N, 1m and 1kg in equation (iv).
$\Rightarrow \dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{\left( {{10}^{5}}dyn \right){{\left( {{10}^{2}}cm \right)}^{2}}{{\left( {{10}^{3}}g \right)}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}=\dfrac{\left( {{10}^{5}}dyn \right)\left( {{10}^{4}}c{{m}^{2}} \right)\left( {{10}^{-6}}{{g}^{-2}} \right)}{(dyn)c{{m}^{2}}{{g}^{-2}}}={{10}^{3}}$
This means that the ratio of the SI unit to CGS unit of G is ${{10}^{3}}$.
Hence, the correct option is A.
Note: If you do not know the relation between the units N and dyn, then convert the N into MKS units.
We force is equal to mass times acceleration.
Therefore, the unit of force is $kgm{{s}^{-2}}$.
This means that 1N = 1$kgm{{s}^{-2}}$.
Similarly, 1dyn = 1$gcm{{s}^{-2}}$.
This means that $\dfrac{1N}{1dyn}=\dfrac{1kgm{{s}^{-2}}}{1gcm{{s}^{-2}}}=\dfrac{({{10}^{3}}g)({{10}^{2}}cm){{s}^{-2}}}{1gcm{{s}^{-2}}}={{10}^{5}}$.
Hence, 1N = ${{10}^{5}}$dyn.
Complete step-by-step answer:
G is the universal gravitational constant. It is a proportionality constant used in the equation of the gravitational force between two point sized bodies that are separated by a distance d, i.e. $F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}$…. (i)
Let us find the SI units of the gravitational constant G by using equation (i).
The SI unit of force F is Newton (N).
The SI unit of distance r is metre (m).
The SI units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is kilogram (kg).
Therefore, the SI unit of G is $\dfrac{N{{(m)}^{2}}}{kg\times kg}=\dfrac{N{{m}^{2}}}{k{{g}^{2}}}=N{{m}^{2}}k{{g}^{-2}}$ …. (ii)
Now, let us calculate the CGS unit of G.
The CGS unit of force F is dyne (dyn).
The CGS unit of distance r is centimetre (cm).
The CGS units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is gram (g).
Therefore, the CGS unit of G is $\dfrac{dyn{{(cm)}^{2}}}{g\times g}=\dfrac{(dyn)c{{m}^{2}}}{{{g}^{2}}}=(dyn)c{{m}^{2}}{{g}^{-2}}$ …. (iii)
Now divide the Si unit (ii) of G by CGS unit (iii) of G.
$\dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{N{{m}^{2}}k{{g}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}$ …. (iv).
1N = ${{10}^{5}}$dyn
1m = ${{10}^{2}}$cm
1kg = ${{10}^{3}}$g
Substitute the values of 1N, 1m and 1kg in equation (iv).
$\Rightarrow \dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{\left( {{10}^{5}}dyn \right){{\left( {{10}^{2}}cm \right)}^{2}}{{\left( {{10}^{3}}g \right)}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}=\dfrac{\left( {{10}^{5}}dyn \right)\left( {{10}^{4}}c{{m}^{2}} \right)\left( {{10}^{-6}}{{g}^{-2}} \right)}{(dyn)c{{m}^{2}}{{g}^{-2}}}={{10}^{3}}$
This means that the ratio of the SI unit to CGS unit of G is ${{10}^{3}}$.
Hence, the correct option is A.
Note: If you do not know the relation between the units N and dyn, then convert the N into MKS units.
We force is equal to mass times acceleration.
Therefore, the unit of force is $kgm{{s}^{-2}}$.
This means that 1N = 1$kgm{{s}^{-2}}$.
Similarly, 1dyn = 1$gcm{{s}^{-2}}$.
This means that $\dfrac{1N}{1dyn}=\dfrac{1kgm{{s}^{-2}}}{1gcm{{s}^{-2}}}=\dfrac{({{10}^{3}}g)({{10}^{2}}cm){{s}^{-2}}}{1gcm{{s}^{-2}}}={{10}^{5}}$.
Hence, 1N = ${{10}^{5}}$dyn.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE