
The ratio of As salary to Bs was 4:5. As salary is increased by \[10\% \] and Bs by \[20\% \], what is the ratio of their salaries now?
A.\[{\text{11:15}}\]
B.\[{\text{11:55}}\]
C.\[{\text{11:66}}\]
D.\[{\text{11:33}}\]
Answer
594.3k+ views
Hint: Here, increment of salary\[ = x \times \dfrac{n}{{100}}\], where the primary amount of salary = x and the percentage increase of the salary = n.
So, increased salary \[ = x + \left( {x \times \dfrac{n}{{100}}} \right)\].
Complete step-by-step answer:
Let, the salary of ‘B’ is x.
Here, Salary of As: Bs = 4:5
So, \[\dfrac{{Salary{\text{ }}of{\text{ }}A}}{x} = \dfrac{4}{5}\]
\[Salary{\text{ }}of{\text{ }}A = \dfrac{{4x}}{5}\]
Now, if salary of A is increased by \[10\% \],
The new salary of A \[ = \dfrac{{4x}}{5} + \left( {\dfrac{{4x}}{5} \times 10\% } \right)\]
\[ = \dfrac{{4x}}{5}\left( {1 + \dfrac{10}{{100}}} \right)\]
\[
= \dfrac{{4x}}{5} \times \dfrac{{11}}{{10}} \\
= \dfrac{{44x}}{{50}} \\
= \dfrac{{22x}}{{25}} \\
\]
Now, the salary of B \[ = x + \left( {x \times 20\% } \right)\]
\[ = x + \left( {x \times \dfrac{{20}}{{100}}} \right)\]
\[ = x\left( {1 + \dfrac{1}{5}} \right) = \dfrac{{6x}}{5}\]
Hence, the ratio of their new salaries are
\[\dfrac{A}{B} = \dfrac{{\dfrac{{22x}}{{25}}}}{{\dfrac{{6x}}{5}}} = \dfrac{{22x}}{{25}} \times \dfrac{5}{{6x}} = \dfrac{{11}}{5} \times \dfrac{1}{3} = \dfrac{{11}}{{15}}\]
Hence, the ratio is \[11:15\].
Note: We have to notice whether there is increase or decrease in salary.
For increase, the increment will be added with the primary salary and for decrease, the decrement will be subtracted from the primary value.
So, increased salary \[ = x + \left( {x \times \dfrac{n}{{100}}} \right)\].
Complete step-by-step answer:
Let, the salary of ‘B’ is x.
Here, Salary of As: Bs = 4:5
So, \[\dfrac{{Salary{\text{ }}of{\text{ }}A}}{x} = \dfrac{4}{5}\]
\[Salary{\text{ }}of{\text{ }}A = \dfrac{{4x}}{5}\]
Now, if salary of A is increased by \[10\% \],
The new salary of A \[ = \dfrac{{4x}}{5} + \left( {\dfrac{{4x}}{5} \times 10\% } \right)\]
\[ = \dfrac{{4x}}{5}\left( {1 + \dfrac{10}{{100}}} \right)\]
\[
= \dfrac{{4x}}{5} \times \dfrac{{11}}{{10}} \\
= \dfrac{{44x}}{{50}} \\
= \dfrac{{22x}}{{25}} \\
\]
Now, the salary of B \[ = x + \left( {x \times 20\% } \right)\]
\[ = x + \left( {x \times \dfrac{{20}}{{100}}} \right)\]
\[ = x\left( {1 + \dfrac{1}{5}} \right) = \dfrac{{6x}}{5}\]
Hence, the ratio of their new salaries are
\[\dfrac{A}{B} = \dfrac{{\dfrac{{22x}}{{25}}}}{{\dfrac{{6x}}{5}}} = \dfrac{{22x}}{{25}} \times \dfrac{5}{{6x}} = \dfrac{{11}}{5} \times \dfrac{1}{3} = \dfrac{{11}}{{15}}\]
Hence, the ratio is \[11:15\].
Note: We have to notice whether there is increase or decrease in salary.
For increase, the increment will be added with the primary salary and for decrease, the decrement will be subtracted from the primary value.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

