
The ratio in which the line \[x + y = 4\] divides the line joining the points \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\] is
A.\[1:2\]
B.\[2:1\]
C.\[3:2\]
D.\[3:1\]
Answer
593.4k+ views
Hint: The equation of a straight line passing through two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is \[\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}\].
If the point \[\left( {x,y} \right)\] divides the line segment joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] in ratio \[1:k\], then \[x = \dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}}\] and \[y = \dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}}\].
Complete step-by-step answer:
Here, the given points are \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\]. Therefore, the equation of the straight line joining the points \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\] is
\[
\dfrac{{y - 1}}{{7 - 1}} = \dfrac{{x - ( - 1)}}{{5 - ( - 1)}} \\
\Rightarrow \dfrac{{y - 1}}{6} = \dfrac{{x - ( - 1)}}{6} \\
\Rightarrow y - 1 = x + 1 \\
\Rightarrow x - y + 2 = 0...............(1) \\
\]
The equation of the given line is
\[x + y - 4 = 0...............(2)\]
Now, adding Eq. (1) and Eq. (2) we get,
\[
2x - 2 = 0 \\
\Rightarrow x = 1 \\
\]
Therefore, from Eq. (2) we get, \[y = (4 - x) = (4 - 1) = 3\]
So, the point of intersection of that two lines is \[\left( {1,3} \right)\].
Now, let the point \[\left( {1,3} \right)\] divide the line segment joining \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\] in ratio \[1:k\].
Therefore, by the section formula, if \[\left( {x,y} \right)\] divides the line segment joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] in ratio \[1:k\], then
\[
x = \dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}} \\
\Rightarrow 1 = \dfrac{{1 \times 5 + k \times ( - 1)}}{{1 + k}} \\
\Rightarrow 1 + k = 5 - k \\
\Rightarrow 2k = 4 \\
\Rightarrow k = 2 \\
\]
\[
y = \dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}} \\
\Rightarrow 3 = \dfrac{{1 \times 7 + k \times 1}}{{1 + k}} \\
\Rightarrow 3k + 3 = 7 + k \\
\Rightarrow 2k = 4 \\
\Rightarrow k = 2 \\
\]
Hence, the line joining the points \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\] is divided by the line \[x + y = 4\] in the ratio of \[1:2\].
Note: You have to know the formula properly which are
The equation of a straight line passing through two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is \[\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}\]. We can also express this equation in a different way as \[\dfrac{{y - {y_1}}}{{x - {x_1}}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\].
The co-ordinate of a point which divides the straight line joining the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] in ratio \[1:k\] is \[\left( {\dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}},\dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}}} \right)\].
If the point \[\left( {x,y} \right)\] divides the line segment joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] in ratio \[1:k\], then \[x = \dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}}\] and \[y = \dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}}\].
Complete step-by-step answer:
Here, the given points are \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\]. Therefore, the equation of the straight line joining the points \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\] is
\[
\dfrac{{y - 1}}{{7 - 1}} = \dfrac{{x - ( - 1)}}{{5 - ( - 1)}} \\
\Rightarrow \dfrac{{y - 1}}{6} = \dfrac{{x - ( - 1)}}{6} \\
\Rightarrow y - 1 = x + 1 \\
\Rightarrow x - y + 2 = 0...............(1) \\
\]
The equation of the given line is
\[x + y - 4 = 0...............(2)\]
Now, adding Eq. (1) and Eq. (2) we get,
\[
2x - 2 = 0 \\
\Rightarrow x = 1 \\
\]
Therefore, from Eq. (2) we get, \[y = (4 - x) = (4 - 1) = 3\]
So, the point of intersection of that two lines is \[\left( {1,3} \right)\].
Now, let the point \[\left( {1,3} \right)\] divide the line segment joining \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\] in ratio \[1:k\].
Therefore, by the section formula, if \[\left( {x,y} \right)\] divides the line segment joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] in ratio \[1:k\], then
\[
x = \dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}} \\
\Rightarrow 1 = \dfrac{{1 \times 5 + k \times ( - 1)}}{{1 + k}} \\
\Rightarrow 1 + k = 5 - k \\
\Rightarrow 2k = 4 \\
\Rightarrow k = 2 \\
\]
\[
y = \dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}} \\
\Rightarrow 3 = \dfrac{{1 \times 7 + k \times 1}}{{1 + k}} \\
\Rightarrow 3k + 3 = 7 + k \\
\Rightarrow 2k = 4 \\
\Rightarrow k = 2 \\
\]
Hence, the line joining the points \[\left( { - 1,1} \right)\] and \[\left( {5,7} \right)\] is divided by the line \[x + y = 4\] in the ratio of \[1:2\].
Note: You have to know the formula properly which are
The equation of a straight line passing through two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is \[\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}\]. We can also express this equation in a different way as \[\dfrac{{y - {y_1}}}{{x - {x_1}}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\].
The co-ordinate of a point which divides the straight line joining the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] in ratio \[1:k\] is \[\left( {\dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}},\dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}}} \right)\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

