
The range of values of “a” for which all the roots of the \[\left( {a - 1} \right){\left( {1 + x + {x^2}} \right)^2} = \left( {a + 1} \right)\left( {1 + {x^2} + {x^4}} \right)\] imaginary is?
a) \[( - \infty , - 2]\]
b) \[(2, + \infty )\]
c) \[\left( { - 2,2} \right)\]
d) none of these
Answer
463.8k+ views
Hint: To solve this question, we first need to simplify the given equation into a simple form or standard form of a quadratic equation. Then, from that standard form we will find the discriminant of that quadratic equation. Then we will apply the condition for imaginary roots of a quadratic equation to find the range of values of “a”.
Complete answer:
We have the equation as:
\[\left( {a - 1} \right){\left( {1 + x + {x^2}} \right)^2} = \left( {a + 1} \right)\left( {1 + {x^2} + {x^4}} \right)\]
On rearranging the terms, we get;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{1 + {x^2} + {x^4}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
Now we will try to express the numerator in the form of a perfect square. So, we can write;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{1 + {x^2} + {x^4} + {x^2} - {x^2}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
Now we will group the terms. So, we have;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{\left( {1 + 2{x^2} + {x^4}} \right) - {x^2}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
The numerator can be written as \[{\left( {a + b} \right)^2}\]. So, we have;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{{{\left( {1 + {x^2}} \right)}^2} - {x^2}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
Now we will use the formula: \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
So, we have;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{\left( {1 + x + {x^2}} \right)\left( {1 + {x^2} - x} \right)}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
On cancelling the terms, we get;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{\left( {1 + {x^2} - x} \right)}}{{\left( {1 + x + {x^2}} \right)}}\]
By applying the componendo-dividendo theorem we get;
\[ \Rightarrow \dfrac{{a - 1 - a - 1}}{{a - 1 + a + 1}} = \dfrac{{\left( {1 + {x^2} - x} \right) - \left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2} - x} \right) + \left( {1 + x + {x^2}} \right)}}\]
On simplification we get;
\[ \Rightarrow \dfrac{{ - 2}}{{2a}} = \dfrac{{ - 2x}}{{2\left( {{x^2} + 1} \right)}}\]
On dividing by two we get;
\[ \Rightarrow \dfrac{1}{a} = \dfrac{x}{{\left( {{x^2} + 1} \right)}}\]
Now we will reciprocate. So, we have;
\[ \Rightarrow a = \dfrac{{\left( {{x^2} + 1} \right)}}{x}\]
On cross-multiplication we get;
\[ \Rightarrow ax = {x^2} + 1\]
On rearranging we get;
\[ \Rightarrow {x^2} + 1 - ax = 0\]
Now this is the standard form of the quadratic equation. The discriminant of this equation is:
\[D = {\left( { - a} \right)^2} - 4 \times 1 \times 1\]
On simplification;
\[ \Rightarrow D = {a^2} - 4\]
Now we know for imaginary roots, discriminant should be less than zero, so, we have;
\[ \Rightarrow {a^2} - 4 < 0\]
On factoring we get;
\[ \Rightarrow \left( {a + 2} \right)\left( {a - 2} \right) < 0\]
This gives
\[ \Rightarrow a \in \left( { - 2,2} \right)\]
Therefore, the correct option is (C)
Note: The quadratic equation we have has a positive coefficient of \[{x^2}\] so, the graph of this equation will be a parabola with upward facing or upward concavity. Another thing to note is that the imaginary roots always occur in pairs.
Complete answer:
We have the equation as:
\[\left( {a - 1} \right){\left( {1 + x + {x^2}} \right)^2} = \left( {a + 1} \right)\left( {1 + {x^2} + {x^4}} \right)\]
On rearranging the terms, we get;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{1 + {x^2} + {x^4}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
Now we will try to express the numerator in the form of a perfect square. So, we can write;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{1 + {x^2} + {x^4} + {x^2} - {x^2}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
Now we will group the terms. So, we have;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{\left( {1 + 2{x^2} + {x^4}} \right) - {x^2}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
The numerator can be written as \[{\left( {a + b} \right)^2}\]. So, we have;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{{{\left( {1 + {x^2}} \right)}^2} - {x^2}}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
Now we will use the formula: \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
So, we have;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{\left( {1 + x + {x^2}} \right)\left( {1 + {x^2} - x} \right)}}{{{{\left( {1 + x + {x^2}} \right)}^2}}}\]
On cancelling the terms, we get;
\[ \Rightarrow \dfrac{{a - 1}}{{a + 1}} = \dfrac{{\left( {1 + {x^2} - x} \right)}}{{\left( {1 + x + {x^2}} \right)}}\]
By applying the componendo-dividendo theorem we get;
\[ \Rightarrow \dfrac{{a - 1 - a - 1}}{{a - 1 + a + 1}} = \dfrac{{\left( {1 + {x^2} - x} \right) - \left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2} - x} \right) + \left( {1 + x + {x^2}} \right)}}\]
On simplification we get;
\[ \Rightarrow \dfrac{{ - 2}}{{2a}} = \dfrac{{ - 2x}}{{2\left( {{x^2} + 1} \right)}}\]
On dividing by two we get;
\[ \Rightarrow \dfrac{1}{a} = \dfrac{x}{{\left( {{x^2} + 1} \right)}}\]
Now we will reciprocate. So, we have;
\[ \Rightarrow a = \dfrac{{\left( {{x^2} + 1} \right)}}{x}\]
On cross-multiplication we get;
\[ \Rightarrow ax = {x^2} + 1\]
On rearranging we get;
\[ \Rightarrow {x^2} + 1 - ax = 0\]
Now this is the standard form of the quadratic equation. The discriminant of this equation is:
\[D = {\left( { - a} \right)^2} - 4 \times 1 \times 1\]
On simplification;
\[ \Rightarrow D = {a^2} - 4\]
Now we know for imaginary roots, discriminant should be less than zero, so, we have;
\[ \Rightarrow {a^2} - 4 < 0\]
On factoring we get;
\[ \Rightarrow \left( {a + 2} \right)\left( {a - 2} \right) < 0\]
This gives
\[ \Rightarrow a \in \left( { - 2,2} \right)\]
Therefore, the correct option is (C)
Note: The quadratic equation we have has a positive coefficient of \[{x^2}\] so, the graph of this equation will be a parabola with upward facing or upward concavity. Another thing to note is that the imaginary roots always occur in pairs.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

