
The range of the function \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\]
(1) \[\left\{ {1,2} \right\}\]
(2) \[\left\{ {1,2,3} \right\}\]
(3) \[\left\{ {1,2,3,4,5} \right\}\]
(4) \[\left\{ 1 \right\}\]
Answer
494.1k+ views
Hint: The given function is \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\] . Firstly, we will find the range of the variable \[x\] from the function \[f\left( x \right)\] and then from the formula of permutation i.e., \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] .After that we will put the different values of \[x\] in the function \[f\left( x \right)\] .And finally, we will get the range of the given function.
Complete step-by-step answer:
The given function is, \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\]
First of all, we will find the range of the variable \[x\] from the function \[f\left( x \right)\]
Now, we know that the given function is defined when
\[x - 1 \geqslant 0\]
\[ \Rightarrow x \geqslant 1{\text{ }} - - - \left( 1 \right)\]
Now, we will find the range of the variable \[x\] by applying the formula of permutation i.e., \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
So, \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\]
Here, \[n = 5 - x\] and \[r = x - 1\]
Therefore, \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}} = {\text{ }}\dfrac{{\left( {5 - x} \right)!}}{{\left( {5 - x - \left( {x - 1} \right)} \right)!}}\]
\[ \Rightarrow f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}} = {\text{ }}\dfrac{{\left( {5 - x} \right)!}}{{\left( {5 - x - x + 1} \right)!}}\]
On simplifying, we get
\[ \Rightarrow f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}} = {\text{ }}\dfrac{{\left( {5 - x} \right)!}}{{\left( {6 - 2x} \right)!}}\]
So, the given function is also defined when
\[6 - 2x \geqslant 0\]
\[ \Rightarrow - 2x \geqslant - 6\]
Now, we know that whenever any term is multiplied or divided by a negative number then the sign of the inequality changes.
Therefore, on multiplying the above inequality by \[ - 1\] , we get
\[x \leqslant 3{\text{ }} - - - \left( 2 \right)\]
So, from \[\left( 1 \right)\] and \[\left( 2 \right)\] we get arrange of variable \[x\] as \[1 \leqslant x \leqslant 3\]
Thus, the range of \[x\] will be \[\left\{ {f\left( 1 \right),{\text{ }}f\left( 2 \right),{\text{ }}f\left( 3 \right)} \right\}\]
Now,
\[f\left( 1 \right) = {\text{ }}{}^{5 - 1}{P_{1 - 1}} = {\text{ }}{}^4{P_0} = {\text{ }}\dfrac{{4!}}{{\left( {4 - 0} \right)!}}{\text{ }} = \dfrac{{4!}}{{4!}} = 1\]
\[f\left( 2 \right) = {\text{ }}{}^{5 - 2}{P_{2 - 1}} = {\text{ }}{}^3{P_1}{\text{ }} = {\text{ }}\dfrac{{3!}}{{\left( {3 - 1} \right)!}}{\text{ }} = \dfrac{{3!}}{{2!}}{\text{ }} = \dfrac{{3 \cdot 2!}}{{2!}}{\text{ }} = 3\]
\[f\left( 3 \right) = {\text{ }}{}^{5 - 3}{P_{3 - 1}} = {\text{ }}{}^2{P_2}{\text{ }} = {\text{ }}\dfrac{{2!}}{{\left( {2 - 2} \right)!}}{\text{ }} = \dfrac{{2!}}{{0!}}{\text{ }} = \dfrac{{2!}}{1}{\text{ }} = 2\]
Thus, we get the range of the given function as \[\left\{ {1,3,2} \right\}\]
Hence, the range of the function is \[\left\{ {1,2,3} \right\}\]
So, the correct answer is “Option 2”.
Note: There is an alternative way to find the range of the variable \[x\]
Here, the given function is \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\]
Now, we know that the given function is defined when
\[x - 1 \geqslant 0\]
\[ \Rightarrow x \geqslant 1{\text{ }} - - - \left( 1 \right)\]
Also, we know that any permutation \[{}^n{P_r}\] is defined when
\[n \geqslant r\]
So, according to this question
\[5 - x \geqslant x - 1\]
Taking \[x\] terms on the right-hand side and constant terms on the left-hand side, we get
\[5 + 1 \geqslant x + x\]
\[ \Rightarrow 6 \geqslant 2x\]
\[ \Rightarrow x \leqslant 3{\text{ }} - - - \left( 2 \right)\]
Thus from \[\left( 1 \right)\] and \[\left( 2 \right)\] we get the range of the variable \[x\] as
\[1 \leqslant x \leqslant 3\]
Complete step-by-step answer:
The given function is, \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\]
First of all, we will find the range of the variable \[x\] from the function \[f\left( x \right)\]
Now, we know that the given function is defined when
\[x - 1 \geqslant 0\]
\[ \Rightarrow x \geqslant 1{\text{ }} - - - \left( 1 \right)\]
Now, we will find the range of the variable \[x\] by applying the formula of permutation i.e., \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
So, \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\]
Here, \[n = 5 - x\] and \[r = x - 1\]
Therefore, \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}} = {\text{ }}\dfrac{{\left( {5 - x} \right)!}}{{\left( {5 - x - \left( {x - 1} \right)} \right)!}}\]
\[ \Rightarrow f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}} = {\text{ }}\dfrac{{\left( {5 - x} \right)!}}{{\left( {5 - x - x + 1} \right)!}}\]
On simplifying, we get
\[ \Rightarrow f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}} = {\text{ }}\dfrac{{\left( {5 - x} \right)!}}{{\left( {6 - 2x} \right)!}}\]
So, the given function is also defined when
\[6 - 2x \geqslant 0\]
\[ \Rightarrow - 2x \geqslant - 6\]
Now, we know that whenever any term is multiplied or divided by a negative number then the sign of the inequality changes.
Therefore, on multiplying the above inequality by \[ - 1\] , we get
\[x \leqslant 3{\text{ }} - - - \left( 2 \right)\]
So, from \[\left( 1 \right)\] and \[\left( 2 \right)\] we get arrange of variable \[x\] as \[1 \leqslant x \leqslant 3\]
Thus, the range of \[x\] will be \[\left\{ {f\left( 1 \right),{\text{ }}f\left( 2 \right),{\text{ }}f\left( 3 \right)} \right\}\]
Now,
\[f\left( 1 \right) = {\text{ }}{}^{5 - 1}{P_{1 - 1}} = {\text{ }}{}^4{P_0} = {\text{ }}\dfrac{{4!}}{{\left( {4 - 0} \right)!}}{\text{ }} = \dfrac{{4!}}{{4!}} = 1\]
\[f\left( 2 \right) = {\text{ }}{}^{5 - 2}{P_{2 - 1}} = {\text{ }}{}^3{P_1}{\text{ }} = {\text{ }}\dfrac{{3!}}{{\left( {3 - 1} \right)!}}{\text{ }} = \dfrac{{3!}}{{2!}}{\text{ }} = \dfrac{{3 \cdot 2!}}{{2!}}{\text{ }} = 3\]
\[f\left( 3 \right) = {\text{ }}{}^{5 - 3}{P_{3 - 1}} = {\text{ }}{}^2{P_2}{\text{ }} = {\text{ }}\dfrac{{2!}}{{\left( {2 - 2} \right)!}}{\text{ }} = \dfrac{{2!}}{{0!}}{\text{ }} = \dfrac{{2!}}{1}{\text{ }} = 2\]
Thus, we get the range of the given function as \[\left\{ {1,3,2} \right\}\]
Hence, the range of the function is \[\left\{ {1,2,3} \right\}\]
So, the correct answer is “Option 2”.
Note: There is an alternative way to find the range of the variable \[x\]
Here, the given function is \[f\left( x \right) = {}^{\left( {5 - x} \right)}{P_{\left( {x - 1} \right)}}\]
Now, we know that the given function is defined when
\[x - 1 \geqslant 0\]
\[ \Rightarrow x \geqslant 1{\text{ }} - - - \left( 1 \right)\]
Also, we know that any permutation \[{}^n{P_r}\] is defined when
\[n \geqslant r\]
So, according to this question
\[5 - x \geqslant x - 1\]
Taking \[x\] terms on the right-hand side and constant terms on the left-hand side, we get
\[5 + 1 \geqslant x + x\]
\[ \Rightarrow 6 \geqslant 2x\]
\[ \Rightarrow x \leqslant 3{\text{ }} - - - \left( 2 \right)\]
Thus from \[\left( 1 \right)\] and \[\left( 2 \right)\] we get the range of the variable \[x\] as
\[1 \leqslant x \leqslant 3\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

