
The range of the function $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$ is
A) {1, 2, 3}
B) {1, 2, 3, 4, 5}
C) {1, 2, 3, 4}
D) {1, 2, 3, 4, 5, 6}
Answer
562.5k+ views
Hint:
The given function is $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$ .
Firstly, find the range of the variable x from the function \[f\left( x \right)\] .
Then, put the different values of x in function \[f\left( x \right)\] .
Finally, this will give the range of the given function $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$
Complete step by step solution:
The given function is $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$ .
So, the given function is defined when $x - 3 \geqslant 0$ .
$\therefore x \geqslant 3$
Now, $f\left( x \right) = {}^{7 - x}{P_{x - 3}} = \dfrac{{\left( {7 - x} \right)!}}{{\left( {7 - x - x + 3} \right)!}} = \dfrac{{\left( {7 - x} \right)!}}{{\left( {10 - 2x} \right)!}}$
So, the given function is also defined when $10 - 2x \geqslant 0$ .
$
\therefore - 2x \geqslant - 10 \\
\therefore x \leqslant 5 \\
$
Thus, we get a range of variable x as $3 \leqslant x \leqslant 5$ .
So, the range of x will be \[\left\{ {f\left( 3 \right),f\left( 4 \right),f\left( 5 \right)} \right\}\]
Now,
$f\left( 3 \right) = {}^{7 - 3}{P_{3 - 3}} = {}^4{P_0} = \dfrac{{4!}}{{\left( {4 - 0} \right)!}} = \dfrac{{4!}}{{4!}} = 1$
$f\left( 4 \right) = {}^{7 - 4}{P_{4 - 3}} = {}^3{P_1} = \dfrac{{3!}}{{\left( {3 - 1} \right)!}} = \dfrac{{3!}}{{2!}} = 3$
$f\left( 5 \right) = {}^{7 - 5}{P_{5 - 3}} = {}^2{P_2} = \dfrac{{2!}}{{\left( {2 - 2} \right)!}} = \dfrac{{2!}}{{0!}} = 2$
Thus, we get the range of the given function as {1, 3, 2} = {1, 2, 3}
So, option (A) is correct.
Note:
Alternate method to find the range of the variable x:
Here, the given function is $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$ .
So, \[x-3\] must be greater than or equal to 0.
$x - 3 \geqslant 0$
$\therefore x \geqslant 3$
Also, any permutation ${}^n{P_r}$ is defined when $n \geqslant r$ .
So, in this question $7 - x \geqslant x - 3$
$
\therefore 7 + 3 \geqslant 2x \\
\therefore 2x \leqslant 10 \\
\therefore x \leqslant 5 \\
$
Thus, we get the range of variable x as $3 \leqslant x \leqslant 5$ .
The given function is $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$ .
Firstly, find the range of the variable x from the function \[f\left( x \right)\] .
Then, put the different values of x in function \[f\left( x \right)\] .
Finally, this will give the range of the given function $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$
Complete step by step solution:
The given function is $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$ .
So, the given function is defined when $x - 3 \geqslant 0$ .
$\therefore x \geqslant 3$
Now, $f\left( x \right) = {}^{7 - x}{P_{x - 3}} = \dfrac{{\left( {7 - x} \right)!}}{{\left( {7 - x - x + 3} \right)!}} = \dfrac{{\left( {7 - x} \right)!}}{{\left( {10 - 2x} \right)!}}$
So, the given function is also defined when $10 - 2x \geqslant 0$ .
$
\therefore - 2x \geqslant - 10 \\
\therefore x \leqslant 5 \\
$
Thus, we get a range of variable x as $3 \leqslant x \leqslant 5$ .
So, the range of x will be \[\left\{ {f\left( 3 \right),f\left( 4 \right),f\left( 5 \right)} \right\}\]
Now,
$f\left( 3 \right) = {}^{7 - 3}{P_{3 - 3}} = {}^4{P_0} = \dfrac{{4!}}{{\left( {4 - 0} \right)!}} = \dfrac{{4!}}{{4!}} = 1$
$f\left( 4 \right) = {}^{7 - 4}{P_{4 - 3}} = {}^3{P_1} = \dfrac{{3!}}{{\left( {3 - 1} \right)!}} = \dfrac{{3!}}{{2!}} = 3$
$f\left( 5 \right) = {}^{7 - 5}{P_{5 - 3}} = {}^2{P_2} = \dfrac{{2!}}{{\left( {2 - 2} \right)!}} = \dfrac{{2!}}{{0!}} = 2$
Thus, we get the range of the given function as {1, 3, 2} = {1, 2, 3}
So, option (A) is correct.
Note:
Alternate method to find the range of the variable x:
Here, the given function is $f\left( x \right) = {}^{7 - x}{P_{x - 3}}$ .
So, \[x-3\] must be greater than or equal to 0.
$x - 3 \geqslant 0$
$\therefore x \geqslant 3$
Also, any permutation ${}^n{P_r}$ is defined when $n \geqslant r$ .
So, in this question $7 - x \geqslant x - 3$
$
\therefore 7 + 3 \geqslant 2x \\
\therefore 2x \leqslant 10 \\
\therefore x \leqslant 5 \\
$
Thus, we get the range of variable x as $3 \leqslant x \leqslant 5$ .
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

