
The radius of the circle $r = a\;\cos \theta + $ $b\sin \theta $ is
A). $\sqrt {\dfrac{{{a^2} + {b^2}}}{4}} $ B) \[\sqrt {{a^2} + {b^2}} \] C) $\dfrac{{{a^2} + {b^2}}}{2}$ D) ${a^2} + {b^2}$
Answer
583.2k+ views
Hint: We will find the standard form of the given equation and then we will compare it with the standard form of the equation of the circle and hence it will give the radius of the circle.
Complete step-by-step answer:
The general form of the equation of circle is ${x^2} + {y^2} + 2gx + 2fy + c = 0$ whose centre is $\left( { - g, - f} \right)$ and radius is $\sqrt {{g^2} + {f^2} - c} $ where g, f, c are 3 constant.
Here, we are given $r = a\cos \theta + b\sin \theta = 0$ (1)
So, our approach will be to convert the given equation in some standard form and then comparing it, we can find the radius.
To solve, this problem, lets first put the value of $cos\theta = \dfrac{x}{r}$ and $\sin \theta = \dfrac{y}{r}$ for the easy approach to our solution.
$\therefore $ we know the trigonometric identity,
${\cos ^2}\theta + {\sin ^2}\theta = 1.$
Also, we know, $\sin \theta = {\raise0.5ex\hbox{$\scriptstyle p$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}$
\[\cos \theta = {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}\]
So, putting the values,
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow {\left( {\dfrac{p}{h}} \right)^2} + {\left( {\dfrac{b}{h}} \right)^2} = 1$
$ \Rightarrow \dfrac{{{p^2} + {b^2}}}{{{h^2}}} = 1$
$ \Rightarrow \dfrac{{{h^2}}}{{{h^2}}} = 1$
1 = 1
Hence, LHS = RHS.
We get $2gx = - ax$
\[ \Rightarrow g = - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}};\]
$2fy = - by$
$ \Rightarrow 2f = - b$
$f = - {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}},$
C = 0
Radius \[ = \sqrt {{g^2} + {f^2} - c} \]
$ = \sqrt {{{\left( { - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)}^2} + {{\left( {\dfrac{{ - b}}{2}} \right)}^2} - 0} $
\[ = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{b^2}}}{4}} \]
\[ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} \]
$ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} $ (A).
Note: The equation of the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ represents the radius that is equal to \[\sqrt {{g^2} + {f^2} - c} \]
Complete step-by-step answer:
The general form of the equation of circle is ${x^2} + {y^2} + 2gx + 2fy + c = 0$ whose centre is $\left( { - g, - f} \right)$ and radius is $\sqrt {{g^2} + {f^2} - c} $ where g, f, c are 3 constant.
Here, we are given $r = a\cos \theta + b\sin \theta = 0$ (1)
So, our approach will be to convert the given equation in some standard form and then comparing it, we can find the radius.
To solve, this problem, lets first put the value of $cos\theta = \dfrac{x}{r}$ and $\sin \theta = \dfrac{y}{r}$ for the easy approach to our solution.
$\therefore $ we know the trigonometric identity,
${\cos ^2}\theta + {\sin ^2}\theta = 1.$
Also, we know, $\sin \theta = {\raise0.5ex\hbox{$\scriptstyle p$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}$
\[\cos \theta = {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}\]
So, putting the values,
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow {\left( {\dfrac{p}{h}} \right)^2} + {\left( {\dfrac{b}{h}} \right)^2} = 1$
$ \Rightarrow \dfrac{{{p^2} + {b^2}}}{{{h^2}}} = 1$
$ \Rightarrow \dfrac{{{h^2}}}{{{h^2}}} = 1$
1 = 1
Hence, LHS = RHS.
We get $2gx = - ax$
\[ \Rightarrow g = - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}};\]
$2fy = - by$
$ \Rightarrow 2f = - b$
$f = - {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}},$
C = 0
Radius \[ = \sqrt {{g^2} + {f^2} - c} \]
$ = \sqrt {{{\left( { - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)}^2} + {{\left( {\dfrac{{ - b}}{2}} \right)}^2} - 0} $
\[ = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{b^2}}}{4}} \]
\[ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} \]
$ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} $ (A).
Note: The equation of the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ represents the radius that is equal to \[\sqrt {{g^2} + {f^2} - c} \]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

