
The radius of the circle $r = a\;\cos \theta + $ $b\sin \theta $ is
A). $\sqrt {\dfrac{{{a^2} + {b^2}}}{4}} $ B) \[\sqrt {{a^2} + {b^2}} \] C) $\dfrac{{{a^2} + {b^2}}}{2}$ D) ${a^2} + {b^2}$
Answer
596.4k+ views
Hint: We will find the standard form of the given equation and then we will compare it with the standard form of the equation of the circle and hence it will give the radius of the circle.
Complete step-by-step answer:
The general form of the equation of circle is ${x^2} + {y^2} + 2gx + 2fy + c = 0$ whose centre is $\left( { - g, - f} \right)$ and radius is $\sqrt {{g^2} + {f^2} - c} $ where g, f, c are 3 constant.
Here, we are given $r = a\cos \theta + b\sin \theta = 0$ (1)
So, our approach will be to convert the given equation in some standard form and then comparing it, we can find the radius.
To solve, this problem, lets first put the value of $cos\theta = \dfrac{x}{r}$ and $\sin \theta = \dfrac{y}{r}$ for the easy approach to our solution.
$\therefore $ we know the trigonometric identity,
${\cos ^2}\theta + {\sin ^2}\theta = 1.$
Also, we know, $\sin \theta = {\raise0.5ex\hbox{$\scriptstyle p$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}$
\[\cos \theta = {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}\]
So, putting the values,
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow {\left( {\dfrac{p}{h}} \right)^2} + {\left( {\dfrac{b}{h}} \right)^2} = 1$
$ \Rightarrow \dfrac{{{p^2} + {b^2}}}{{{h^2}}} = 1$
$ \Rightarrow \dfrac{{{h^2}}}{{{h^2}}} = 1$
1 = 1
Hence, LHS = RHS.
We get $2gx = - ax$
\[ \Rightarrow g = - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}};\]
$2fy = - by$
$ \Rightarrow 2f = - b$
$f = - {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}},$
C = 0
Radius \[ = \sqrt {{g^2} + {f^2} - c} \]
$ = \sqrt {{{\left( { - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)}^2} + {{\left( {\dfrac{{ - b}}{2}} \right)}^2} - 0} $
\[ = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{b^2}}}{4}} \]
\[ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} \]
$ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} $ (A).
Note: The equation of the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ represents the radius that is equal to \[\sqrt {{g^2} + {f^2} - c} \]
Complete step-by-step answer:
The general form of the equation of circle is ${x^2} + {y^2} + 2gx + 2fy + c = 0$ whose centre is $\left( { - g, - f} \right)$ and radius is $\sqrt {{g^2} + {f^2} - c} $ where g, f, c are 3 constant.
Here, we are given $r = a\cos \theta + b\sin \theta = 0$ (1)
So, our approach will be to convert the given equation in some standard form and then comparing it, we can find the radius.
To solve, this problem, lets first put the value of $cos\theta = \dfrac{x}{r}$ and $\sin \theta = \dfrac{y}{r}$ for the easy approach to our solution.
$\therefore $ we know the trigonometric identity,
${\cos ^2}\theta + {\sin ^2}\theta = 1.$
Also, we know, $\sin \theta = {\raise0.5ex\hbox{$\scriptstyle p$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}$
\[\cos \theta = {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle h$}}\]
So, putting the values,
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow {\left( {\dfrac{p}{h}} \right)^2} + {\left( {\dfrac{b}{h}} \right)^2} = 1$
$ \Rightarrow \dfrac{{{p^2} + {b^2}}}{{{h^2}}} = 1$
$ \Rightarrow \dfrac{{{h^2}}}{{{h^2}}} = 1$
1 = 1
Hence, LHS = RHS.
We get $2gx = - ax$
\[ \Rightarrow g = - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}};\]
$2fy = - by$
$ \Rightarrow 2f = - b$
$f = - {\raise0.5ex\hbox{$\scriptstyle b$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}},$
C = 0
Radius \[ = \sqrt {{g^2} + {f^2} - c} \]
$ = \sqrt {{{\left( { - {\raise0.5ex\hbox{$\scriptstyle a$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right)}^2} + {{\left( {\dfrac{{ - b}}{2}} \right)}^2} - 0} $
\[ = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{b^2}}}{4}} \]
\[ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} \]
$ = \sqrt {\dfrac{{{a^2} + {b^2}}}{4}} $ (A).
Note: The equation of the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ represents the radius that is equal to \[\sqrt {{g^2} + {f^2} - c} \]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

