
The radius of a circle is 5 cm. Find the area of sector formed by the arc of this circle of length 3.5 cm.
Answer
584.4k+ views
Hint: We are given the radius of the circle as 5 cm and the length of the arc is 3.5 cm. If the length of the arc is $l$ cm and radius of circle is $r$cm, then the area of the sector formed is given by $\dfrac{{lr}}{2}$. Substitute the values of $l$ and $r$ to calculate the area of the sector.
Complete step-by-step answer:
Given the radius of the circle is 5 cm.
The arc is the part of the circumference.
The portion formed by an arc of a circle along with its two radii is known as the sector of the circle.
The area of a sector is given by the formula, $\dfrac{{lr}}{2}$, where $l$ is the length of an arc and $r$ is the radius of the circle.
On, substituting the values of $l$ and $r$, we get
$A = \dfrac{{\left( {3.5} \right)\left( 5 \right)}}{2}$
On solving the expression, we get,
$A = \dfrac{{17.5}}{2}$
Thus the area of the sector of length 3.5 cm formed by the circle of radius 5 cm is 8.75 ${\text{c}}{{\text{m}}^2}$.
Note:- The area of the sector of the circle is given by, $\dfrac{{lr}}{2}$ where $l$ is the length of an arc and $r$ is the radius of the circle. If angle between the sector is given, the area of the sector of the circle can also be calculated using the formula, $\dfrac{\theta }{{360}} \times \pi {r^2}$, where $\theta $ is the angle of the sector.
Complete step-by-step answer:
Given the radius of the circle is 5 cm.
The arc is the part of the circumference.
The portion formed by an arc of a circle along with its two radii is known as the sector of the circle.
The area of a sector is given by the formula, $\dfrac{{lr}}{2}$, where $l$ is the length of an arc and $r$ is the radius of the circle.
On, substituting the values of $l$ and $r$, we get
$A = \dfrac{{\left( {3.5} \right)\left( 5 \right)}}{2}$
On solving the expression, we get,
$A = \dfrac{{17.5}}{2}$
Thus the area of the sector of length 3.5 cm formed by the circle of radius 5 cm is 8.75 ${\text{c}}{{\text{m}}^2}$.
Note:- The area of the sector of the circle is given by, $\dfrac{{lr}}{2}$ where $l$ is the length of an arc and $r$ is the radius of the circle. If angle between the sector is given, the area of the sector of the circle can also be calculated using the formula, $\dfrac{\theta }{{360}} \times \pi {r^2}$, where $\theta $ is the angle of the sector.
Recently Updated Pages
What is Prashastis class 10 social studies CBSE

A man of height 170cm wants to see his complete image class 10 physics CBSE

AssertionElement and compounds are the examples of class 10 chemistry CBSE

How many circles can be drawn passing through A one class 10 maths CBSE

A new flag is to be designed with six vertical strips class 10 maths CBSE

What is the correct order of the waste management hierarchy class 10 biology CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

