The radius of a balloon is increasing at the rate of 10 cm/sec. At what rate is the surface area of the balloon increasing when the radius is 15 cm?
Answer
Verified
508.2k+ views
Hint: Here, we need to know the formula for finding the surface area of balloon = $4\pi {r^2}$ sq. units
Let $r$ be the radius and $S$ be the surface area of the balloon at any time t. Then,
$S = 4\pi {r^2}$ ... (1)
It is given that the radius of the balloon is increasing at a rate of 10 cm/sec
$ \Rightarrow \frac{{dr}}{{dt}} = 10cm/\sec $
As the radius of the balloon changes the surface area of the balloon also changes.
That means rate of change in surface area is (Differentiating equation (1) w.r.t time)
$ \Rightarrow \frac{{dS}}{{dt}} = 8\pi r\frac{{dr}}{{dt}}$
Substituting the value of $\frac{{dr}}{{dt}}$
$ \Rightarrow \frac{{dS}}{{dt}} = 80\pi r$
Finding the rate of change in surface area of when $r = 15cm$
${\left( {\frac{{dS}}{{dt}}} \right)_{r = 15}} = 80\pi (15) = 1200\pi $ $c{m^2}/\sec $
$\therefore $ Hence surface area of balloon is increasing at a rate of $1200\pi $ $c{m^2}/\sec $, when radius of the balloon is 15cm.
Note: The surface area of a balloon is $4\pi {r^2}$ as same as the surface area of the sphere, where $r$ is the radius of the balloon. The radius of the balloon is increasing with some rate means the amount of air inside the balloon is increasing with time which in turn increases the physical size of the balloon. This results in increasing surface area of the balloon with respect to the radius.
Let $r$ be the radius and $S$ be the surface area of the balloon at any time t. Then,
$S = 4\pi {r^2}$ ... (1)
It is given that the radius of the balloon is increasing at a rate of 10 cm/sec
$ \Rightarrow \frac{{dr}}{{dt}} = 10cm/\sec $
As the radius of the balloon changes the surface area of the balloon also changes.
That means rate of change in surface area is (Differentiating equation (1) w.r.t time)
$ \Rightarrow \frac{{dS}}{{dt}} = 8\pi r\frac{{dr}}{{dt}}$
Substituting the value of $\frac{{dr}}{{dt}}$
$ \Rightarrow \frac{{dS}}{{dt}} = 80\pi r$
Finding the rate of change in surface area of when $r = 15cm$
${\left( {\frac{{dS}}{{dt}}} \right)_{r = 15}} = 80\pi (15) = 1200\pi $ $c{m^2}/\sec $
$\therefore $ Hence surface area of balloon is increasing at a rate of $1200\pi $ $c{m^2}/\sec $, when radius of the balloon is 15cm.
Note: The surface area of a balloon is $4\pi {r^2}$ as same as the surface area of the sphere, where $r$ is the radius of the balloon. The radius of the balloon is increasing with some rate means the amount of air inside the balloon is increasing with time which in turn increases the physical size of the balloon. This results in increasing surface area of the balloon with respect to the radius.
Recently Updated Pages
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Will Mr Black be at home Saturday evening Yes hell class 8 english CBSE
An electrician sells a room heater for Rs 3220 gaining class 8 maths CBSE
Trending doubts
How is the Lok Sabha more powerful than the Rajya class 8 social science CBSE
Write a letter to your friend telling himher how you class 8 english CBSE
Write the following in HinduArabic numerals XXIX class 8 maths CBSE
Differentiate between the farms in India and the U class 8 social science CBSE
The strategy of Divide and rule was adopted by A Lord class 8 social science CBSE
When will we use have had and had had in the sente class 8 english CBSE