
The projection of a line segment on \[x\], \[y\], \[z\] axes are 12, 4, 3. The length and the direction cosines of the line segments are
A.13, \[ < 12/13\], \[4/13\], \[3/13 > \]
B.19, \[ < 12/19\], \[4/19\] , 19 \[ > \]
C.11, \[ < 12/11\], \[4/11\], \[3/11 > \]
D.None of these
Answer
568.8k+ views
Hint: Here we need to find the length and the direction cosines of the line segments. First, we will write the line segment in the vector form and then we will use the given data to find the value of the vector. From there, we will find the value of length of length of the line segments using the formula and then we will find the value of direction cosines of the line segment.
Complete step-by-step answer:
Let the vector form of the line segment be represented as
\[\overrightarrow a = {a_1}\overrightarrow {i} + {a_2}\overrightarrow j + {a_3}\overrightarrow k \] ……. \[\left( 1 \right)\]
Here vector along the coordinate axes are \[\overrightarrow i \], \[\overline j \] and \[\overrightarrow k \]
Given that projection of the given vector i.e. \[\overrightarrow a \] on x-axis is 12, that with y-axis is 4 and that with z-axis is 3 i.e.
\[ \Rightarrow \overrightarrow a .\overrightarrow i = 12\]
Now, we will find the dot product of \[\overrightarrow a \] and \[\overrightarrow i \] from equation 1.
\[\overrightarrow a \cdot \overrightarrow i = {a_1}\overrightarrow {i} \cdot \overrightarrow i + {a_2}\overrightarrow j \cdot \overrightarrow i + {a_3}\overrightarrow k \cdot \overrightarrow i \]
We know the value of dot products \[\overrightarrow j \cdot \overrightarrow {i} \] and \[\overrightarrow k \cdot \overrightarrow i \] is equal to zero and the value of dot product \[\overrightarrow i \cdot \overrightarrow i \] is equal to 1.
Now, we will substitute the values here.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow i = {a_1} = 12\]
It is also given that
\[\overrightarrow a \cdot \overrightarrow j = 4\]
Now, we will find the dot product of \[\overrightarrow a \] and \[\overrightarrow j \] from equation 1.
\[\overrightarrow a \cdot \overrightarrow j = {a_1}\overrightarrow {i} \cdot \overrightarrow j + {a_2}\overrightarrow j \cdot \overrightarrow j + {a_3}\overrightarrow k \cdot \overrightarrow j \]
We know the value of dot products \[\overrightarrow {i} \cdot \overrightarrow j \] and \[\overrightarrow k \cdot \overrightarrow j \] is equal to zero and the value of dot product \[\overrightarrow j \cdot \overrightarrow j \] is equal to 1.
Now, we will substitute the values here.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow j = {a_2} = 4\]
It is also given that
\[\overrightarrow a \cdot \overrightarrow k = 3\]
Now, we will find the dot product of \[\overrightarrow a \] and \[\overrightarrow k \] from equation 1.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow k = {a_1}\overrightarrow {i} \cdot \overrightarrow k + {a_2}\overrightarrow j \cdot \overrightarrow k + {a_3}\overrightarrow k \cdot \overrightarrow k \]
We know the value of dot products \[\overrightarrow {i} \cdot \overrightarrow k \] and \[\overrightarrow j \cdot \overrightarrow k \] is equal to zero and the value of dot product \[\overrightarrow k \cdot \overrightarrow k \] is equal to 1.
Now, we will substitute the values here.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow k = {a_3} = 3\]
Therefore,
\[\overrightarrow a = 12\overrightarrow {i} + 4\overrightarrow j + 3\overrightarrow k \]
Now, we will find the length of the line segment by find the magnitude of the given vector \[\overrightarrow a \].
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_3}^2 + {a_3}^2} \]
Now, we will substitute the values here.
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{{12}^2} + {4^2} + {3^2}} \]
On further simplification, we get
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {144 + 16 + 9} \]
On adding the numbers, we get
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {169} \]
Putting the value of square root of 169, we get
\[ \Rightarrow \left| {\overrightarrow a } \right| = 13\]
Thus, the length of the line segment is equal to 13.
Now, we will find the direction cosines of the vector.
Let the directional cosines of vector \[a\] be \[cos\alpha \],\[cos\beta \] and \[cos\gamma \].
We have
\[ \Rightarrow cos\alpha = \dfrac{{\overrightarrow a \cdot \overrightarrow i }}{{\mid \overrightarrow a \mid }}\]
On substituting the values of vectors and their magnitude here, we get
\[ \Rightarrow cos\alpha = \dfrac{{12}}{{13}}\]
We have
\[ \Rightarrow cos\beta = \dfrac{{\overrightarrow a \cdot \overrightarrow j }}{{\mid \overrightarrow a \mid }}\]
On substituting the values of vectors and their magnitude here, we get
\[ \Rightarrow cos\beta = \dfrac{{4}}{{13}}\]
We have
\[ \Rightarrow cos\gamma = \dfrac{{\overrightarrow a \cdot \overrightarrow k }}{{\mid \overrightarrow a \mid }}\]
On substituting the values of vectors and their magnitude here, we get
\[ \Rightarrow cos\gamma = \dfrac{{3}}{{13}}\]
Thus, the direction cosines of the vector \[a\] are \[\dfrac{{12}}{{13}}\], \[\dfrac{4}{{13}}\] and \[\dfrac{3}{{13}}\]
Hence, the correct option is option A.
Note: Here, we have obtained the direction ratios of the vector. The directional cosines of a vector are defined as the cosines of the angle that a vector makes with the three coordinate axes. So, we can say direction cosine is a set of information that represents the direction of a vector. A vector has both magnitude and direction.
Complete step-by-step answer:
Let the vector form of the line segment be represented as
\[\overrightarrow a = {a_1}\overrightarrow {i} + {a_2}\overrightarrow j + {a_3}\overrightarrow k \] ……. \[\left( 1 \right)\]
Here vector along the coordinate axes are \[\overrightarrow i \], \[\overline j \] and \[\overrightarrow k \]
Given that projection of the given vector i.e. \[\overrightarrow a \] on x-axis is 12, that with y-axis is 4 and that with z-axis is 3 i.e.
\[ \Rightarrow \overrightarrow a .\overrightarrow i = 12\]
Now, we will find the dot product of \[\overrightarrow a \] and \[\overrightarrow i \] from equation 1.
\[\overrightarrow a \cdot \overrightarrow i = {a_1}\overrightarrow {i} \cdot \overrightarrow i + {a_2}\overrightarrow j \cdot \overrightarrow i + {a_3}\overrightarrow k \cdot \overrightarrow i \]
We know the value of dot products \[\overrightarrow j \cdot \overrightarrow {i} \] and \[\overrightarrow k \cdot \overrightarrow i \] is equal to zero and the value of dot product \[\overrightarrow i \cdot \overrightarrow i \] is equal to 1.
Now, we will substitute the values here.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow i = {a_1} = 12\]
It is also given that
\[\overrightarrow a \cdot \overrightarrow j = 4\]
Now, we will find the dot product of \[\overrightarrow a \] and \[\overrightarrow j \] from equation 1.
\[\overrightarrow a \cdot \overrightarrow j = {a_1}\overrightarrow {i} \cdot \overrightarrow j + {a_2}\overrightarrow j \cdot \overrightarrow j + {a_3}\overrightarrow k \cdot \overrightarrow j \]
We know the value of dot products \[\overrightarrow {i} \cdot \overrightarrow j \] and \[\overrightarrow k \cdot \overrightarrow j \] is equal to zero and the value of dot product \[\overrightarrow j \cdot \overrightarrow j \] is equal to 1.
Now, we will substitute the values here.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow j = {a_2} = 4\]
It is also given that
\[\overrightarrow a \cdot \overrightarrow k = 3\]
Now, we will find the dot product of \[\overrightarrow a \] and \[\overrightarrow k \] from equation 1.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow k = {a_1}\overrightarrow {i} \cdot \overrightarrow k + {a_2}\overrightarrow j \cdot \overrightarrow k + {a_3}\overrightarrow k \cdot \overrightarrow k \]
We know the value of dot products \[\overrightarrow {i} \cdot \overrightarrow k \] and \[\overrightarrow j \cdot \overrightarrow k \] is equal to zero and the value of dot product \[\overrightarrow k \cdot \overrightarrow k \] is equal to 1.
Now, we will substitute the values here.
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow k = {a_3} = 3\]
Therefore,
\[\overrightarrow a = 12\overrightarrow {i} + 4\overrightarrow j + 3\overrightarrow k \]
Now, we will find the length of the line segment by find the magnitude of the given vector \[\overrightarrow a \].
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_3}^2 + {a_3}^2} \]
Now, we will substitute the values here.
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{{12}^2} + {4^2} + {3^2}} \]
On further simplification, we get
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {144 + 16 + 9} \]
On adding the numbers, we get
\[ \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {169} \]
Putting the value of square root of 169, we get
\[ \Rightarrow \left| {\overrightarrow a } \right| = 13\]
Thus, the length of the line segment is equal to 13.
Now, we will find the direction cosines of the vector.
Let the directional cosines of vector \[a\] be \[cos\alpha \],\[cos\beta \] and \[cos\gamma \].
We have
\[ \Rightarrow cos\alpha = \dfrac{{\overrightarrow a \cdot \overrightarrow i }}{{\mid \overrightarrow a \mid }}\]
On substituting the values of vectors and their magnitude here, we get
\[ \Rightarrow cos\alpha = \dfrac{{12}}{{13}}\]
We have
\[ \Rightarrow cos\beta = \dfrac{{\overrightarrow a \cdot \overrightarrow j }}{{\mid \overrightarrow a \mid }}\]
On substituting the values of vectors and their magnitude here, we get
\[ \Rightarrow cos\beta = \dfrac{{4}}{{13}}\]
We have
\[ \Rightarrow cos\gamma = \dfrac{{\overrightarrow a \cdot \overrightarrow k }}{{\mid \overrightarrow a \mid }}\]
On substituting the values of vectors and their magnitude here, we get
\[ \Rightarrow cos\gamma = \dfrac{{3}}{{13}}\]
Thus, the direction cosines of the vector \[a\] are \[\dfrac{{12}}{{13}}\], \[\dfrac{4}{{13}}\] and \[\dfrac{3}{{13}}\]
Hence, the correct option is option A.
Note: Here, we have obtained the direction ratios of the vector. The directional cosines of a vector are defined as the cosines of the angle that a vector makes with the three coordinate axes. So, we can say direction cosine is a set of information that represents the direction of a vector. A vector has both magnitude and direction.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

