
The product of two positive integers is 936. Find the greater number, if the integers are in ratio \[13:18.\]
A.27
B.31
C.36
D.41
Answer
593.4k+ views
Hint: From the given data we will form two linear equations in two variables(the two integers), and then solve the linear equations by using the substitution method to find the greatest number.
Complete step by step answer:
Given data: The product of two positive integers is 936.
The ratio of those integers is \[13:18.\]
Now, let us assume that the two integers are a and b, where ${\text{b > a}}$
From the given data, we can say that
$
ab = 936...........(i) \\
\dfrac{a}{b} = \dfrac{{13}}{{18}}..............(ii) \\
a = \dfrac{{13}}{{18}}b.............(iii) \\
$
On substituting the value of ‘a’ in equation (i), we will get
\[
(\dfrac{{13}}{{18}}b)b = 936 \\
\Rightarrow {b^2} = 936\left( {\dfrac{{18}}{{13}}} \right) \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {b^2} = 72(18) \\
\Rightarrow {b^2} = 1296 \\
On{\text{ }}taking{\text{ }}square{\text{ }}root{\text{ }}we{\text{ }}get,{\text{ }} \\
\Rightarrow b = \pm 36 \\
\]
But it is given that ‘a’ and ‘b’ are positive integers, giving us the value of ‘b’ i.e.
$b = 36$
Now, putting the value of ‘b’ in equation (iii)
$
a = \dfrac{{13}}{{18}}(36) \\
\Rightarrow a = 13(2) \\
\Rightarrow a = 26 \\
$
From the assumption we made it is clear the ‘b’ is the greater integer and ${\text{b = 36}}{\text{.}}$
Hence, option (C) is correct.
Note: While solving for ‘a’ and ‘b’ we can also substitute the value of ‘b’ as is shown below
$
ab = 936, \\
\Rightarrow \dfrac{a}{b} = \dfrac{{13}}{{18}} \\
\Rightarrow a = \dfrac{{13}}{{18}}b \\
\Rightarrow b = \dfrac{{18}}{{13}}a..........(iv) \\
$
On substituting the value of ‘b’ in equation (i), we will get
\[
{\text{a(}}\dfrac{{{\text{18}}}}{{{\text{13}}}}{\text{a) = 936}} \\
\Rightarrow {{\text{a}}^{\text{2}}}{\text{ = 936}}\left( {\dfrac{{{\text{13}}}}{{{\text{18}}}}} \right) \\
{\text{On simplification we get,}} \\
\Rightarrow {{\text{a}}^{\text{2}}}{\text{ = 52(13)}} \\
\Rightarrow {{\text{a}}^{\text{2}}}{\text{ = 676}} \\
{\text{On taking square root, we get,}} \\ \]
$\Rightarrow$ $a$ =$\pm$ $26$
But it is given that ‘a’ and ‘b’ are positive integers, giving us the value of ‘a’ i.e.
${\text{a = 26}}$
Now, putting the value of ‘a’ in equation (iv)
$
{\text{b = }}\dfrac{{{\text{18}}}}{{{\text{13}}}}{\text{(26)}} \\
\Rightarrow {\text{b = 18(2)}} \\
\Rightarrow {\text{b = 36}} \\
$
Additional information: Square root of any number always gives us the answer in pairs either it is of a real number or complex number. Here we also get a pair of values of ‘b’ but it is mentioned that the integers are positive, so we proceed further with the positive value of ‘b’.
Complete step by step answer:
Given data: The product of two positive integers is 936.
The ratio of those integers is \[13:18.\]
Now, let us assume that the two integers are a and b, where ${\text{b > a}}$
From the given data, we can say that
$
ab = 936...........(i) \\
\dfrac{a}{b} = \dfrac{{13}}{{18}}..............(ii) \\
a = \dfrac{{13}}{{18}}b.............(iii) \\
$
On substituting the value of ‘a’ in equation (i), we will get
\[
(\dfrac{{13}}{{18}}b)b = 936 \\
\Rightarrow {b^2} = 936\left( {\dfrac{{18}}{{13}}} \right) \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {b^2} = 72(18) \\
\Rightarrow {b^2} = 1296 \\
On{\text{ }}taking{\text{ }}square{\text{ }}root{\text{ }}we{\text{ }}get,{\text{ }} \\
\Rightarrow b = \pm 36 \\
\]
But it is given that ‘a’ and ‘b’ are positive integers, giving us the value of ‘b’ i.e.
$b = 36$
Now, putting the value of ‘b’ in equation (iii)
$
a = \dfrac{{13}}{{18}}(36) \\
\Rightarrow a = 13(2) \\
\Rightarrow a = 26 \\
$
From the assumption we made it is clear the ‘b’ is the greater integer and ${\text{b = 36}}{\text{.}}$
Hence, option (C) is correct.
Note: While solving for ‘a’ and ‘b’ we can also substitute the value of ‘b’ as is shown below
$
ab = 936, \\
\Rightarrow \dfrac{a}{b} = \dfrac{{13}}{{18}} \\
\Rightarrow a = \dfrac{{13}}{{18}}b \\
\Rightarrow b = \dfrac{{18}}{{13}}a..........(iv) \\
$
On substituting the value of ‘b’ in equation (i), we will get
\[
{\text{a(}}\dfrac{{{\text{18}}}}{{{\text{13}}}}{\text{a) = 936}} \\
\Rightarrow {{\text{a}}^{\text{2}}}{\text{ = 936}}\left( {\dfrac{{{\text{13}}}}{{{\text{18}}}}} \right) \\
{\text{On simplification we get,}} \\
\Rightarrow {{\text{a}}^{\text{2}}}{\text{ = 52(13)}} \\
\Rightarrow {{\text{a}}^{\text{2}}}{\text{ = 676}} \\
{\text{On taking square root, we get,}} \\ \]
$\Rightarrow$ $a$ =$\pm$ $26$
But it is given that ‘a’ and ‘b’ are positive integers, giving us the value of ‘a’ i.e.
${\text{a = 26}}$
Now, putting the value of ‘a’ in equation (iv)
$
{\text{b = }}\dfrac{{{\text{18}}}}{{{\text{13}}}}{\text{(26)}} \\
\Rightarrow {\text{b = 18(2)}} \\
\Rightarrow {\text{b = 36}} \\
$
Additional information: Square root of any number always gives us the answer in pairs either it is of a real number or complex number. Here we also get a pair of values of ‘b’ but it is mentioned that the integers are positive, so we proceed further with the positive value of ‘b’.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


