The product of two numbers is 9. If one of them is $3\dfrac{3}{7}$. Then find the other one.
Last updated date: 18th Mar 2023
•
Total views: 204k
•
Views today: 1.84k
Answer
204k+ views
Hint: We first convert the improper fraction to proper fraction. The other number can be simply found by dividing the number 9 by $3\dfrac{3}{7}$ in proper form.
Complete step-by-step answer:
The product of two numbers is 9. If one of them is $3\dfrac{3}{7}$. Changing from improper fraction to proper fraction for $3\dfrac{3}{7}$, we get $3\dfrac{3}{7}=\dfrac{24}{7}$.
The other number will be the division of 9 by $\dfrac{24}{7}$. The quotient is $\dfrac{9}{\dfrac{24}{7}}=\dfrac{63}{24}$.
We need to find the simplified form of the proper fraction $\dfrac{63}{24}$.
Simplified form is achieved when the G.C.D of the denominator and the numerator is 1.
This means we can’t eliminate any more common root from them other than 1.
For any fraction $\dfrac{p}{q}$, we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $\dfrac{{}^{p}/{}_{d}}{{}^{q}/{}_{d}}$.
For our given fraction $\dfrac{63}{24}$, the G.C.D of the denominator and the numerator is 3.
$\begin{align}
& 3\left| \!{\underline {\,
24,63 \,}} \right. \\
& 1\left| \!{\underline {\,
8,21 \,}} \right. \\
\end{align}$
Now we divide both the denominator and the numerator with 3 and get $\dfrac{{}^{63}/{}_{3}}{{}^{24}/{}_{3}}=\dfrac{21}{8}$.
Therefore, the other number is $\dfrac{21}{8}$.
So, the correct answer is “$\dfrac{21}{8}$”.
Note: The process is similar for both proper and improper fractions. In case of mixed fractions, we need to convert it into an improper fraction and then apply the case like we did in the above problem. If the given form is improper itself, then we just have to complete the division.
For conversion we follow the equational condition of $\dfrac{a}{b}=x+\dfrac{c}{b}$. The representation of the mixed fraction will be $x\dfrac{c}{b}$.
Complete step-by-step answer:
The product of two numbers is 9. If one of them is $3\dfrac{3}{7}$. Changing from improper fraction to proper fraction for $3\dfrac{3}{7}$, we get $3\dfrac{3}{7}=\dfrac{24}{7}$.
The other number will be the division of 9 by $\dfrac{24}{7}$. The quotient is $\dfrac{9}{\dfrac{24}{7}}=\dfrac{63}{24}$.
We need to find the simplified form of the proper fraction $\dfrac{63}{24}$.
Simplified form is achieved when the G.C.D of the denominator and the numerator is 1.
This means we can’t eliminate any more common root from them other than 1.
For any fraction $\dfrac{p}{q}$, we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $\dfrac{{}^{p}/{}_{d}}{{}^{q}/{}_{d}}$.
For our given fraction $\dfrac{63}{24}$, the G.C.D of the denominator and the numerator is 3.
$\begin{align}
& 3\left| \!{\underline {\,
24,63 \,}} \right. \\
& 1\left| \!{\underline {\,
8,21 \,}} \right. \\
\end{align}$
Now we divide both the denominator and the numerator with 3 and get $\dfrac{{}^{63}/{}_{3}}{{}^{24}/{}_{3}}=\dfrac{21}{8}$.
Therefore, the other number is $\dfrac{21}{8}$.
So, the correct answer is “$\dfrac{21}{8}$”.
Note: The process is similar for both proper and improper fractions. In case of mixed fractions, we need to convert it into an improper fraction and then apply the case like we did in the above problem. If the given form is improper itself, then we just have to complete the division.
For conversion we follow the equational condition of $\dfrac{a}{b}=x+\dfrac{c}{b}$. The representation of the mixed fraction will be $x\dfrac{c}{b}$.
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
