
The product of two expressions is \[\left( {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \right)\] . If one of the two expressions is \[\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\] ,then find the other.
Answer
609.6k+ views
Hint:-We will take the other expression to be (a).
As \[\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\times ~\left( a \right)\text{ }=\left( {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \right)\]
Complete step-by-step answer:
Therefore, to find (a), we will have to divide \[\left( {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \right)\text{ }by\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\] .
So, let us now divide \[\left( {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \right)\text{ }by\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\] .
\[\begin{align}
& x_{{}}^{2}+x+1\overset{x_{{}}^{3}-x_{{}}^{2}+x}{\overline{\left){\begin{align}
& +x_{{}}^{5}+x_{{}}^{3}+x \\
& \underline{\begin{align}
& +x_{{}}^{5}+x_{{}}^{4}+x_{{}}^{3} \\
& \left( - \right)\ \left( - \right)\ \ \left( - \right) \\
\end{align}} \\
\end{align}}\right.}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -x_{{}}^{4}+x \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\begin{align}
& -x_{{}}^{4}-x_{{}}^{3}-x_{{}}^{2} \\
& \left( + \right)\ \left( + \right)\ \ \left( + \right) \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +x_{{}}^{3}+x_{{}}^{2}+x \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\begin{align}
& +x_{{}}^{3}+x_{{}}^{2}+x \\
& \left( - \right)\ \left( - \right)\ \ \left( - \right) \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\ \ \ 00 \\
\end{align}\]
We can see that the quotient of this question is \[\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\] .
Therefore, the other number is \[\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\] .
Hence, the answer of this question is \[\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\] .
Let us now verify this question.
Verification:-
\[\begin{array}{*{35}{l}}
\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\Rightarrow {{x}^{3}}\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)-\text{ }{{x}^{2}}\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\text{ }+\text{ }x\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\Rightarrow {{x}^{5}}+\text{ }{{x}^{4}}+\text{ }{{x}^{3}}-\text{ }{{x}^{4}}-\text{ }{{x}^{3}}-\text{ }{{x}^{2}}+\text{ }{{x}^{3}}+\text{ }{{x}^{2}}+\text{ }x\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\Rightarrow {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\end{array}\]
Hence, proved
Note:-One must do all the calculations in this question very carefully.
Also not only in this question, the students must be very careful while solving any such questions as if there is any mistake in the calculus, then the answer can come out to be wrong.
As \[\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\times ~\left( a \right)\text{ }=\left( {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \right)\]
Complete step-by-step answer:
Therefore, to find (a), we will have to divide \[\left( {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \right)\text{ }by\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\] .
So, let us now divide \[\left( {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \right)\text{ }by\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\] .
\[\begin{align}
& x_{{}}^{2}+x+1\overset{x_{{}}^{3}-x_{{}}^{2}+x}{\overline{\left){\begin{align}
& +x_{{}}^{5}+x_{{}}^{3}+x \\
& \underline{\begin{align}
& +x_{{}}^{5}+x_{{}}^{4}+x_{{}}^{3} \\
& \left( - \right)\ \left( - \right)\ \ \left( - \right) \\
\end{align}} \\
\end{align}}\right.}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -x_{{}}^{4}+x \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\begin{align}
& -x_{{}}^{4}-x_{{}}^{3}-x_{{}}^{2} \\
& \left( + \right)\ \left( + \right)\ \ \left( + \right) \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +x_{{}}^{3}+x_{{}}^{2}+x \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\begin{align}
& +x_{{}}^{3}+x_{{}}^{2}+x \\
& \left( - \right)\ \left( - \right)\ \ \left( - \right) \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\ \ \ 00 \\
\end{align}\]
We can see that the quotient of this question is \[\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\] .
Therefore, the other number is \[\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\] .
Hence, the answer of this question is \[\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\] .
Let us now verify this question.
Verification:-
\[\begin{array}{*{35}{l}}
\left( {{x}^{3}}-\text{ }{{x}^{2}}+\text{ }x \right)\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\Rightarrow {{x}^{3}}\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)-\text{ }{{x}^{2}}\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\text{ }+\text{ }x\text{ }\left( {{x}^{2}}+\text{ }x\text{ }+\text{ }1 \right)\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\Rightarrow {{x}^{5}}+\text{ }{{x}^{4}}+\text{ }{{x}^{3}}-\text{ }{{x}^{4}}-\text{ }{{x}^{3}}-\text{ }{{x}^{2}}+\text{ }{{x}^{3}}+\text{ }{{x}^{2}}+\text{ }x\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\Rightarrow {{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x\text{ }=\text{ }{{x}^{5}}+\text{ }{{x}^{3}}+\text{ }x \\
\end{array}\]
Hence, proved
Note:-One must do all the calculations in this question very carefully.
Also not only in this question, the students must be very careful while solving any such questions as if there is any mistake in the calculus, then the answer can come out to be wrong.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

