
The price of sugar has increased by 20%. By what percent must consumption of sugar be decreased so that the expenditure on sugar may remain the same?
Answer
501.6k+ views
Hint: We first assume the consumption of sugar and the price of the sugar. We will find the increased price. Then from the total expenditure we find the new amount of sugar consumption of sugar. We will finally convert it percentage form.
Complete step-by-step answer:
Let us assume the consumption of sugar is $y$ Kg. The price of the sugar is $x$ Rs. per Kg.
The total price will be $xy$ Rs.
The price of sugar has increased by 20%. Therefore, the new price is
$x\left( 1+\dfrac{20}{100} \right)=\dfrac{120x}{100}=\dfrac{6x}{5}$ .
As the total expenditure on sugar may remain the same, we find the new use of sugar.
We get $\dfrac{xy}{\dfrac{6x}{5}}=\dfrac{5xy}{6x}=\dfrac{5y}{6}$.
The change of consumption reduces by $y-\dfrac{5y}{6}=\dfrac{y}{6}$.
The percentage change is $\dfrac{\dfrac{y}{6}}{y}\times 100=\dfrac{50}{3}$.
The consumption needs to be reduced by $\dfrac{50}{3}$%.
So, the correct answer is “Option B”.
Note: The value of the fraction is actually the unitary value of $\dfrac{50}{3}$ out of 100. Therefore, in percentage value we got $\dfrac{50}{3}$ as the percentage. Percentage deals with the ratio out of 100. The ratio value for both fraction and percentage is the same.
Complete step-by-step answer:
Let us assume the consumption of sugar is $y$ Kg. The price of the sugar is $x$ Rs. per Kg.
The total price will be $xy$ Rs.
The price of sugar has increased by 20%. Therefore, the new price is
$x\left( 1+\dfrac{20}{100} \right)=\dfrac{120x}{100}=\dfrac{6x}{5}$ .
As the total expenditure on sugar may remain the same, we find the new use of sugar.
We get $\dfrac{xy}{\dfrac{6x}{5}}=\dfrac{5xy}{6x}=\dfrac{5y}{6}$.
The change of consumption reduces by $y-\dfrac{5y}{6}=\dfrac{y}{6}$.
The percentage change is $\dfrac{\dfrac{y}{6}}{y}\times 100=\dfrac{50}{3}$.
The consumption needs to be reduced by $\dfrac{50}{3}$%.
So, the correct answer is “Option B”.
Note: The value of the fraction is actually the unitary value of $\dfrac{50}{3}$ out of 100. Therefore, in percentage value we got $\dfrac{50}{3}$ as the percentage. Percentage deals with the ratio out of 100. The ratio value for both fraction and percentage is the same.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

