
The present population of the town is 25,000.It grows at 4% ,5% and 8% in the first year ,second year and third year respectively,the population after three years is
A.29484
B.28696
C.24,579
D.30,184
Answer
584.1k+ views
Hint: Here it is enough if we find the percentage value at the end of each year and add it with the population of the previous year.
Complete step-by-step answer:
Step 1:
We are given that at present the population is 25000.
Let us consider the present population to be ${P_1}$
${P_1} = 25000$
Now it is given that there is a population rise of 4% in the first year .
This is nothing other than 4% of ${P_1}$, people have increased.
So ,let's find the value of 4% of ${P_1}$,
$
\Rightarrow \dfrac{4}{{100}}*25000 = 4*250 \\
{\text{ }} = 1000 \\
$
Therefore there is a rise of 1000 people at the end of first year .
So now the population at the end of first year is ${P_1} + 1000$
Let the new population be${P_2}$
Therefore
$
{P_2} = {P_1} + 1000 = 25000 + 1000 = 26000 \\
\therefore {P_2} = 26000 \\
$
Step 2:
Now let's repeat the same process with ${P_2}$
Now it is given that there is a population rise of 5% in the second year .
This is nothing other than 5% of ${P_2}$, people have increased.
So ,let's find the value of 5% of ${P_2}$,
$
\Rightarrow \dfrac{5}{{100}}*26000 = 5*260 \\
{\text{ }} = 1300 \\
$
Therefore there is a rise of 1300 people at the end of second year when compared to the previous year.
So now the population at the end of second year is ${P_2} + 1300$
Let the new population be${P_3}$
Therefore
$
{P_3} = {P_2} + 1300 = 26000 + 1300 = 27300 \\
\therefore {P_3} = 27300 \\
$
Step 3:
Now let's repeat the same process with ${P_3}$
Now it is given that there is a population rise of 8% in the third year .
This is nothing other than 8% of ${P_3}$, people have increased.
So ,let's find the value of 8% of ${P_3}$,
$
\Rightarrow \dfrac{8}{{100}}*27300 = 8*273 \\
{\text{ }} = 2184 \\
$
Therefore there is a rise of 2184 people at the end of third year when compared to the previous year.
So now the population at the end of third year is ${P_3} + 2184$
Let the new population be${P_4}$
Therefore
$
{P_4} = {P_3} + 2184 = 27300 + 2184 = 29484 \\
\therefore {P_4} = 29484 \\
$
Therefore the population after three years is 29,484.
The correct option is A
Note: The percent rate is calculated by dividing the new value by the original value and multiplying by 100%. The percentage value or new value is calculated by multiplying the original value by the percent rate and dividing by 100%.
Complete step-by-step answer:
Step 1:
We are given that at present the population is 25000.
Let us consider the present population to be ${P_1}$
${P_1} = 25000$
Now it is given that there is a population rise of 4% in the first year .
This is nothing other than 4% of ${P_1}$, people have increased.
So ,let's find the value of 4% of ${P_1}$,
$
\Rightarrow \dfrac{4}{{100}}*25000 = 4*250 \\
{\text{ }} = 1000 \\
$
Therefore there is a rise of 1000 people at the end of first year .
So now the population at the end of first year is ${P_1} + 1000$
Let the new population be${P_2}$
Therefore
$
{P_2} = {P_1} + 1000 = 25000 + 1000 = 26000 \\
\therefore {P_2} = 26000 \\
$
Step 2:
Now let's repeat the same process with ${P_2}$
Now it is given that there is a population rise of 5% in the second year .
This is nothing other than 5% of ${P_2}$, people have increased.
So ,let's find the value of 5% of ${P_2}$,
$
\Rightarrow \dfrac{5}{{100}}*26000 = 5*260 \\
{\text{ }} = 1300 \\
$
Therefore there is a rise of 1300 people at the end of second year when compared to the previous year.
So now the population at the end of second year is ${P_2} + 1300$
Let the new population be${P_3}$
Therefore
$
{P_3} = {P_2} + 1300 = 26000 + 1300 = 27300 \\
\therefore {P_3} = 27300 \\
$
Step 3:
Now let's repeat the same process with ${P_3}$
Now it is given that there is a population rise of 8% in the third year .
This is nothing other than 8% of ${P_3}$, people have increased.
So ,let's find the value of 8% of ${P_3}$,
$
\Rightarrow \dfrac{8}{{100}}*27300 = 8*273 \\
{\text{ }} = 2184 \\
$
Therefore there is a rise of 2184 people at the end of third year when compared to the previous year.
So now the population at the end of third year is ${P_3} + 2184$
Let the new population be${P_4}$
Therefore
$
{P_4} = {P_3} + 2184 = 27300 + 2184 = 29484 \\
\therefore {P_4} = 29484 \\
$
Therefore the population after three years is 29,484.
The correct option is A
Note: The percent rate is calculated by dividing the new value by the original value and multiplying by 100%. The percentage value or new value is calculated by multiplying the original value by the percent rate and dividing by 100%.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Full form of STD, ISD and PCO

What are gulf countries and why they are called Gulf class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

